

Schallimmissionsprognose für zwölf Windenergieanlagen am Standort

Groß Rietz

(Brandenburg)

Datum: 10.06.2020

Bericht Nr. 18-1-3048-003-NF

Auftraggeber:

Enercon IPP GmbH

Dreekamp 5 | 26605 Aurich

Auftragsnummer: 356002966

Bearbeiter:

Ramboll Deutschland GmbH

Jonas Feja, MLE

Breitscheidstraße 6

DE-34119 Kassel

Tel 0561 / 288 573-0

Fax 0561 / 288 573-19

Die vorliegende Schallimmissionsprognose für den Standort Groß Rietz (Brandenburg) wurde der Ramboll Deutschland GmbH im März 2020 von der Enercon IPP GmbH in Auftrag gegeben und gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch erstellt. Rechtsgrundlage dieses Gutachtens ist das BlmSchG [1] mit dem in §1 festgehaltenen Zweck "[...] Menschen [...] vor schädlichen Umwelteinwirkungen zu schützen [...]". Die Ramboll Deutschland GmbH ist nach DIN EN ISO/IEC 17025:2005 [2] u. a. für die Erstellung von Schallimmissionsprognosen akkreditiert. Die firmenintern verwendeten Berechnungsverfahren gemäß den zuvor genannten Anforderungen sind in der Ramboll-Qualitätsmanagement Prozessbeschreibung "Schall" festgelegt und dokumentiert.

Für die physikalische Einhaltung der prognostizierten Ergebnisse des Schallgutachtens werden seitens des Gutachters keine Garantien übernommen. Sie basieren auf den Berechnungen nach Vorgaben der TA-Lärm [3], der DIN ISO 9613-2 [4] modifiziert durch das Interimsverfahren [5] gemäß den aktuellen Empfehlungen der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) [6] und unter Berücksichtigung spezifischer Landesvorgaben für Brandenburg sowie auf Basis der vom Auftraggeber und dem WEA-Hersteller zur Verfügung gestellten Standort- und Anlagendaten.

Alle Rechte an diesem Bericht sind der Ramboll Deutschland GmbH vorbehalten. Dieses Dokument darf, mit Ausnahme des Auftraggebers, der Genehmigungsbehörden und der finanzierenden Banken, weder in Teilen noch in vollem Umfang ohne vorherige schriftliche Zustimmung der Ramboll Deutschland GmbH reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

	Nr.	Datum	Bearbeiter	Beschreibung
Original	002	30.10.2019	T. Mertens	Planung von 13 WEA
Revision	003	10.06.2020	J. Feja	Planung von 12 WEA, Änderung des WEA- Typs

Kassel, 10.06.2020

Jonas Feja, MLE (Bearbeiter) Dipl.-Geogr. Marc Brüning

(Prüfer)

Inhalt:

1 Zusammenfassung	4
2 Standortdaten	6
2.1 Aufgabenstellung	6
2.2 Immissionsorte	8
2.3 Potentielle Schallreflexionen	16
2.4 Vorbelastungen	16
2.4.1 Gewerbliche Vorbelastungen2.4.2 Vorbelastungen durch Windenergieanlagen	16 17
3 Kenndaten Windenergieanlagen	18
3.1 Allgemeine Angaben	18
3.2 Schallleistungspegel	19
3.2.1 Vorbelastung 3.2.2 Zusatzbelastung	20 23
4 Ergebnisse der Immissionsberechnungen	26
4.1 Beurteilungspegel an den Immissionsorten	26
4.2 Vergleichswerte für Abnahme- / Überwachungsmes	sungen 28
4.3 Bewertung der Ergebnisse	28
5 Literaturverzeichnis	30
6 Anhang	32

1 Zusammenfassung

Für die Planung von zwölf Windenergieanlagen des Typs Enercon E-160 EP5 E2 am Standort Groß Rietz wurde eine Schallimmissionsprognose entsprechend der TA-Lärm [3] nach der Berechnungsvorschrift DIN ISO 9613-2 [4] modifiziert nach dem Interimsverfahren [5] entsprechend den Hinweisen der LAI [6] unter Berücksichtigung spezifischer Landesvorgaben für Brandenburg für die zu berücksichtigende Vor-, Zusatz- und Gesamtbelastung an den dem Projekt benachbarten Immissionsorten durchgeführt. Die gewerbliche Vorbelastung wurde nach dem Alternativen Verfahren berechnet. Zur sicheren Einhaltung der nächtlichen Immissionsrichtwerte (IRW) sollen die geplanten WEA 5, WEA 7, und WEA 9 bis WEC 13 im Nachtzeitraum schallreduziert betrieben werden.

Der Berechnung zugrunde gelegt wurden die Herstellerangaben des geplanten Anlagentyps Enercon E-160 EP5 E2 mit einer Nabenhöhe (NH) von 166,6 m. Die resultierenden Beurteilungspegel L_r im oberen Vertrauensbereich (OVB) an den nach TA Lärm [3] maßgeblichen Immissionsorten sind neben den nächtlichen Immissionsrichtwerten (IRW) in der folgenden Tabelle aufgeführt.

Tabelle 1: Zusammenfassung der Ergebnisse

Ю	Bezeichnung	IRW [dB(A)]	L _r [dB(A)] *)		
B01	Beeskow, Radinkendorf Ausbau 2	45	41		
B02	Beeskow, Radinkendorf 33	45	41		
B03	Beeskow, Radinkendorf 36	40	41		
B04	Beeskow, Radinkendorfer Straße 37	45	39		
B05	Beeskow, Waldweg 2a	40	39		
B06	Beeskow, Schützenstraße 28	35	34		
R01	Rietz-Neuendorf, Schrödershof 2	45	42		
R02	Rietz-Neuendorf, Feldweg 2	43	40		
R03	Rietz-Neuendorf, Beeskower Chaussee 1	45	45		
R04	Rietz-Neuendorf, Kreuzberge 2	45	46		

^{*)} Es wurden die Rundungsregeln gemäß Nr. 4.5.1 DIN 1333 [7] angewendet.

Die Nacht-Immissionsrichtwerte nach TA Lärm [3] werden unter Berücksichtigung des oberen Vertrauensbereichs an den Immissionsorten B01, B02, B04 bis B06 und R01 bis R03 eingehalten.

An den Immissionsorten B03 und R04 wird der nächtliche Immissionsrichtwert um 1 dB(A) überschritten. Nach Ziffer 3.2.1 Absatz 3 TA Lärm [3] ist eine Überschreitung um bis zu 1 dB(A) aufgrund der bestehenden Vorbelastung zulässig.

2 Standortdaten

2.1 Aufgabenstellung

Der Auftraggeber plant am Standort Groß Rietz nördlich der Stadt Beeskow einen Windpark mit insgesamt zwölf Windenergieanlagen (WEA) des Typs Enercon E-160 EP5 E2 mit 166,6 m Nabenhöhe zu errichten (siehe Tabelle 2). Im Zuge der Planung sollen sieben WEA des Typs Vestas V80 zurückgebaut werden.

Tabelle 2: Kenndaten der geplanten WEA

WEA	WEA Horotollor / Typ	Nabenhöhe	Rechtswert	Hochwert		
WEA	WEA Hersteller / Typ	[m]	[UTM 32 WG	584, Zone 33]		
WEC1	Enercon E-160 EP5 E2	166,6	447.766	5.785.579		
WEC2	Enercon E-160 EP5 E2	166,6	448.201	5.785.656		
WEC3	Enercon E-160 EP5 E2	166,6	448.539	5.785.463		
WEC4	Enercon E-160 EP5 E2	160 EP5 E2 166,6		5.785.283		
WEC5	Enercon E-160 EP5 E2	166,6	447.732	5.785.075		
WEC6	Enercon E-160 EP5 E2	166,6	448.527	5.785.100		
WEC7	Enercon E-160 EP5 E2	166,6	448.103	5.784.864		
WEC9	Enercon E-160 EP5 E2	166,6	448.296	5.784.353		
WEC10	Enercon E-160 EP5 E2	166,6	448.832	5.784.371		
WEC11	Enercon E-160 EP5 E2	166,6	448.538	5.784.060		
WEC12	Enercon E-160 EP5 E2	166,6	448.219	5.783.711		
WEC13	Enercon E-160 EP5 E2	166,6	448.747	5.783.733		

Vor Ort existieren bereits 34 weitere WEA sowie eine Schweinemastanlage, eine Biogasanlage und ein Spanplattenwerk. Diese werden als Vorbelastungen untersucht.

Es soll der Beurteilungspegel L_r der durch die geplanten Windenergieanlagen hervorgerufenen Schallimmissionen an der umliegenden schutzwürdigen Bebauung berechnet und mit den

immissionsschutzrechtlichen Vorgaben der TA Lärm [3] für diese Gebäude (Immissionsrichtwerte nach Abschnitt 6.1) verglichen und bewertet werden.

Die Immissionsprognose wird entsprechend den aktuellen Empfehlungen der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) [6] nach dem vom NALS modifizierten Verfahren ("Interimsverfahren") [5] der DIN ISO 9613-2 [4] unter Berücksichtigung der Landesvorgaben (Brandenburg) durchgeführt. Dabei werden günstige Schallausbreitungsbedingungen angenommen (Mitwindbedingungen, 10°C Lufttemperatur, 70 % Luftfeuchte) (vgl. DIN ISO 9613-2, Kap. 7.2, Tab. 2). Weitere Angaben zu den Grundlagen der Berechnungen sind dem Anhang zu entnehmen. Das Höhenrelief wurde den Höhenlinien der Topographischen Karte 1:25.000 entnommen. Die Berechnung wurde mit der Software windPRO [8], Modul DECIBEL durchgeführt.

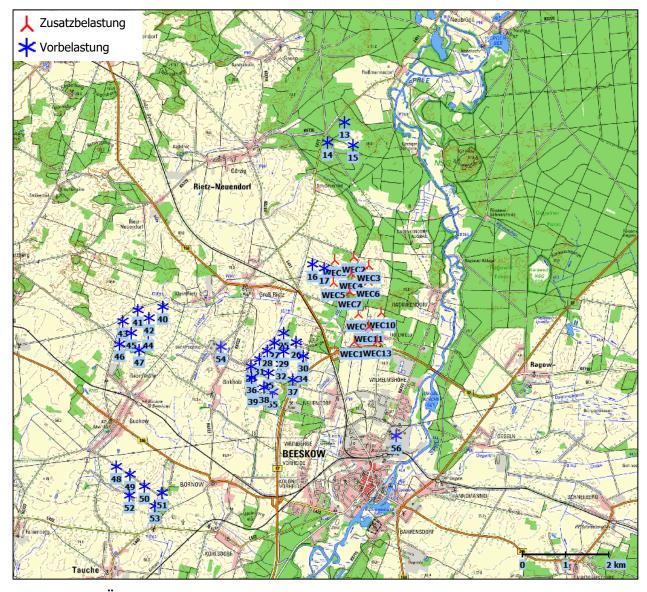


Abbildung 1: Übersichtskarte

2.2 Immissionsorte

Für die Berechnung der Lärmimmissionen am Standort Groß Rietz wurden die in der Umgebung des Standorts liegenden schutzbedürftigen maßgeblichen Immissionsorte auf Basis topographischer Karten, des ATKIS Basis-DLM [9] und anhand von Luftbildern ermittelt. Im Rahmen einer Standortbesichtigung am 24.10.2019 wurden diese überprüft.

Die Auswahl der für die Schallimmissionsprognose relevanten Immissionsorte am Standort erfolgte auf der Basis des nach der Ziffer 2.2 a) TA-Lärm [3] definierten Einwirkungsbereichs der geplanten WEA. Der Einwirkungsbereich der WEA ist demnach definiert als der Bereich, in dem der Beurteilungspegel der Zusatzbelastung weniger als 10 dB(A) unter dem Immissionsrichtwert (IRW) liegt. Dazu sind auf der folgenden Karte die Iso-Schalllinien (Isophonen) für 25 dB(A), 30 dB(A) und für 35 dB(A) eingezeichnet. In der vorliegenden Immissionsberechnung sind lediglich diejenigen Immissionsorte zu berücksichtigen, die innerhalb der 25 dB(A)-Isophone liegen, wenn der zulässige Immissionsrichtwert am Immissionsort 35 dB(A) beträgt, die innerhalb der 30 dB(A)-Isophone liegen, wenn der zulässige Immissionsrichtwert 45 dB(A) beträgt.

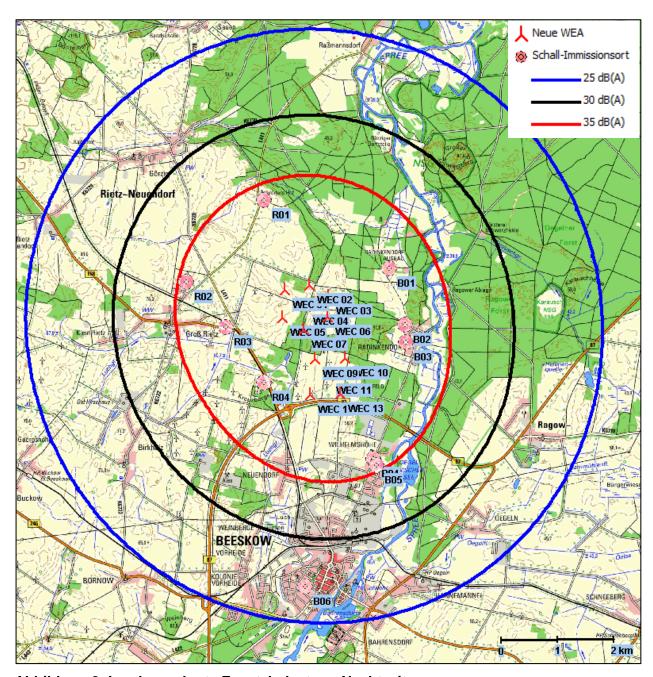


Abbildung 2: Isophonenkarte Zusatzbelastung Nachtzeitraum

Dabei sind nach Abschnitt 2.3 TA Lärm [3] die Immissionsorte zu wählen, an denen eine Überschreitung der Immissionsrichtwerte am ehesten zu erwarten ist. In Tabelle 3 sind die maßgeblichen Immissionsorte mit ihren im Gutachten verwendeten Bezeichnungen und die dort jeweils relevanten Immissionsrichtwerte aufgeführt. Die genaue Lage der Immissionsorte lässt sich den folgenden Abbildungen sowie der Isophonenkarte im Anhang entnehmen. Die Koordinaten sowie die Abstände zwischen Immissionsorten und Windenergieanlagen (in Metern) werden auf den DECIBEL-Hauptergebnisausdrucken im Anhang angegeben.

Für die Beurteilung der Schallimmissionen an den Immissionsorten wird der niedrigere Immissionsrichtwert für den Nachtzeitraum (22-6 Uhr) herangezogen.

Tabelle 3: Immissionsorte

Ю	Bezeichnung	IRW 22-6 Uhr [dB(A)]	Gebiets- einstufung¹	Grundlage der Einstufung
B01	Beeskow, Radinkendorf Ausbau 2	45	AB	Flächennutzungsplan der Stadt Beeskow
B02	Beeskow, Radinkendorf 33	45	M	Flächennutzungsplan der Stadt Beeskow
B03	Beeskow, Radinkendorf 36	40	WA	BPlan W20, Einfamilienhaus mit Praxis
B04	Beeskow, Radinkendorfer Straße 37	45	M	B-Plan M1, Radinken- dorfer Straße
B05	Beeskow, Waldweg 2a	40	W	Flächennutzungsplan der Stadt Beeskow
В06	Beeskow, Schützenstraße 28	35	so	B-Plan S1, Neubau Krankenhaus Beeskow
R01	Rietz-Neuendorf, Schrödershof 2	45	AB	Gutachterliche Ein- schätzung
R02	Rietz-Neuendorf, Feldweg 2	43	-	Auskunft des LFU Brandenburg
R03	Rietz-Neuendorf, Beeskower Chaussee 1	45	AB	Gutachterliche Ein- schätzung
R04	Rietz-Neuendorf, Kreuzberge 2	45	AB	Gutachterliche Ein- schätzung

Für die Gemeinde Rietz-Neuendorf liegen keine Flächennutzungspläne sowie Bebauungspläne vor. Die Immissionsorte in diesen Ortslagen und deren Schutzwürdigkeit wurden auf Grundlage der örtlichen Gegebenheiten und der bei der Standortbesichtigung gewonnenen Eindrücke entsprechend unserer gutachterlichen Einschätzung bestimmt.

¹ AB = Außenbereich

SO = Sondergebiet Krankenhaus

WA = Allgemeines Wohngebiet

M = Mischgebiet

W = Wohngebiet

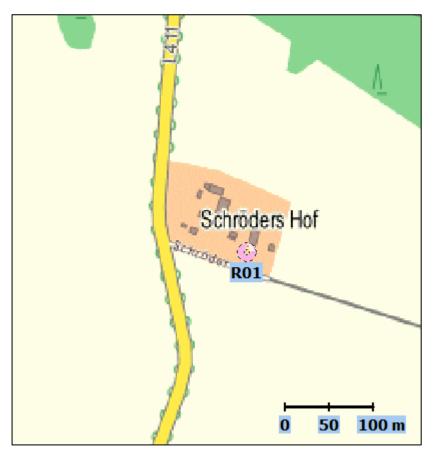


Abbildung 3: Lage des Immissionsorts R01

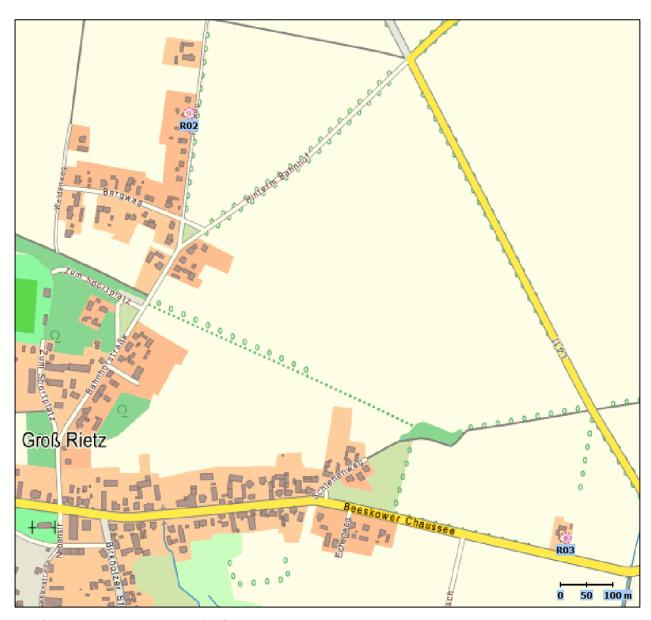


Abbildung 4: Lage der Immissionsorte R02 und R03

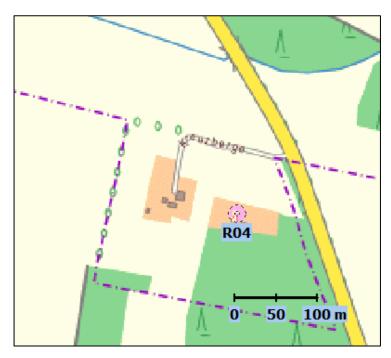


Abbildung 5: Lage des Immissionsorts R04

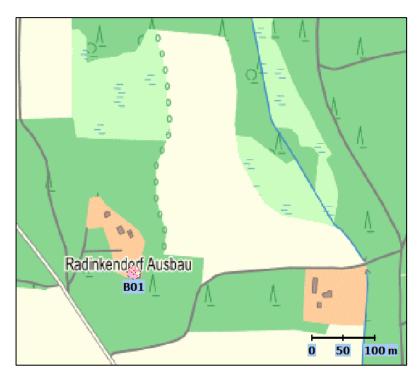


Abbildung 6: Lage des Immissionsorts B01

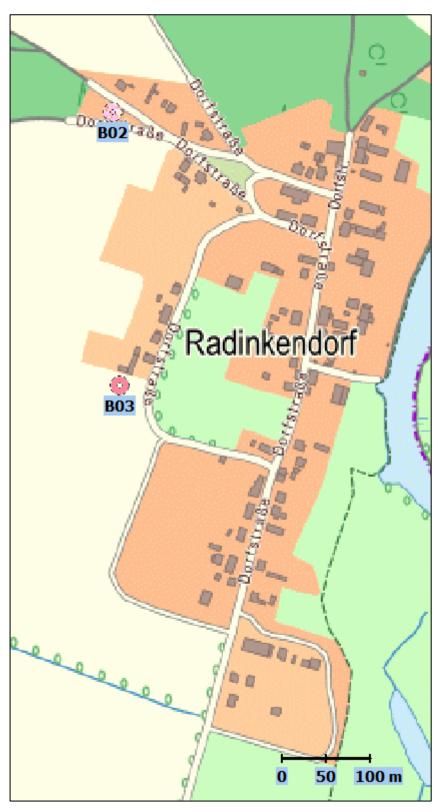


Abbildung 7: Lage der Immissionsorte B02 und B03

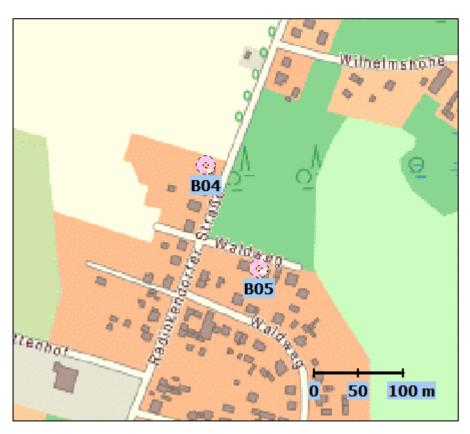


Abbildung 8: Lage der Immissionsorte B04 und B05

Abbildung 9: Lage des Immissionsorts B06

2.3 Potentielle Schallreflexionen

Merkliche Reflexionen ergeben sich überwiegend an gegenüber den WEA abgeschirmten Gebäudeseiten oder (durch Reflexionen an den eher niedrigen Nebengebäuden, wie Schuppen, Garagen, Gewächshäuser) im Erdgeschossbereich der Wohngebäude. Hier führen aber auch besonders Abschirmungen wieder zu Pegelsenkungen, so dass im Regelfall die Berechnung bei freier Schallausbreitung (Addition aller Quellen ohne Abschirmungseffekte) höhere Pegel ergibt als bei der Berücksichtigung der konkreten Bebauungsstruktur unter Beachtung von Abschirmungen und Reflexionen. Schallreflexionen, die den Beurteilungspegel relevant erhöhen, treten in der Regel bei Gebäude-WEA-Konstellationen auf, bei denen sich Fenster nahe an Gebäudewinkeln befinden, also bei L-förmigen direkt über Eck stehenden Gebäuden oder U-förmigen Gebäudekonstellationen und die WEA mehrheitlich in Richtung der reflektierenden über Eck stehenden Gebäudestrukturen stehen.

Weiterhin kann davon ausgegangen werden, dass sich der Schalldruckpegel an einem Aufpunkt durch eine vollständige Reflexion an einer Gebäudefläche maximal verdoppeln kann (+3 dB(A)) [10]. Ausgehend von einem üblichen Reflexionsverlust von 1 dB(A) an Gebäuden sind daher Reflexionen, wenn überhaupt, nur an Aufpunkten relevant, an denen ein Beurteilungspegel von weniger als 2,5 dB(A) unter dem Immissionsrichtwert berechnet wurde.

Die unter Berücksichtigung von Reflexions- <u>und</u> Abschirmungseffekten für eine relevante Pegelerhöhung notwendige Lagekonstellation von Gebäuden und WEA liegt bei den betreffenden Immissionsorten oder benachbarten Gebäuden nicht vor, eine detaillierte Betrachtung ist daher nicht notwendig.

2.4 Vorbelastungen

2.4.1 Gewerbliche Vorbelastungen

Im Vorfeld der Ortsbesichtigung wurden in Absprache mit der zuständigen Behörde potenzielle Quellen für Vorbelastungen identifiziert. Bei der Ortsbesichtigung am 24.10.2019 wurde an den entsprechenden Strukturen ein subjektiver Eindruck der Geräuschemissionen gewonnen. Zudem wurde an den definierten Immissionsorten auf Geräusche einer potenziellen Vorbelastung geachtet.

Nach Auskunft des LFU Brandenburg, Referat T23, Frau Giebermann, sind drei Gewerbliche Vorbelastungen zu berücksichtigen:

- Schweinemastanlage Birkholz, L_{WA} 95 dB(A)
- Biogasanlage Beeskow, L_{WA} 101 dB(A)
- Spanplattenwerk, L_{WA} 106 dB(A)

2.4.2 Vorbelastungen durch Windenergieanlagen

Nach Informationen des LFU Brandenburg, Referat T23, Frau Giebermann, besteht eine zu berücksichtigende Vorbelastung durch bestehende und geplante Windenergieanlagen in der weiteren Umgebung des Standorts. Detaillierte Angaben zu den Kenndaten der Anlagen befinden sich in Kapitel 3 sowie im Anhang. Die Anlagen wurden anhand ihrer technischen Daten sowie ihren Schallleistungspegeln in die Berechnungssoftware implementiert und der Beurteilungspegel der Vorbelastung an den maßgeblichen Immissionsorten berechnet (vgl. Abschnitt 3.2.1).

3 Kenndaten Windenergieanlagen

3.1 Allgemeine Angaben

Am Standort Groß Rietz sind zwölf Windenergieanlagen des Typs Enercon E-160 EP5 E2 geplant. Sieben Vorbelastungs-WEA sollen im Zuge dieser Planung zurückgebaut werden. Weiterhin existieren bereits 34 WEA in der Umgebung bzw. befinden sich in einem fortgeschrittenen Planungsstadium, die als Vorbelastung zu berücksichtigen sind.

Tabelle 4: Kenndaten Zusatz- und relevante Vorbelastungs-WEA

WEA	Hersteller	Тур	Leistung [kW]	Nabenhöhe [m]	Art*)
WEC1	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC2	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC3	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC4	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC5	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC6	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC7	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC9	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC10	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC11	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC12	Enercon	E-160 EP5 E2	5.500	166,6	ZB
WEC13	Enercon	E-160 EP5 E2	5.500	166,6	ZB
13	Nordex	N149/4.0-4.5-4.500	4.500	164,0	VB
14	Nordex	N149/4.0-4.5-4.500	4.500	164,0	VB
15	Nordex	N149/4.0-4.5-4.500	4.500	164,0	VB
16	Enercon	E-66-15.66	1.500	67,0	VB
17	Enercon	E-66-15.66	1.500	67,0	VB
25	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
26	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
27	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
28	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
29	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
30	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
31	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
32	Vestas	V80-2.0MW-2.000	2.000	100,0	VB

WEA	Hersteller	Тур	Leistung [kW]	Nabenhöhe [m]	Art*)
33	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
34	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
35	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
36	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
37	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
38	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
39	Vestas	V80-2.0MW-2.000	2.000	100,0	VB
40	REpower**)	MD 70-1.500	1.500	65,0	VB
41	REpower**)	MD 70-1.500	1.500	65,0	VB
42	REpower**)	MD 70-1.500	1.500	65,0	VB
43	REpower**)	MD 70-1.500	1.500	65,0	VB
44	REpower**)	MD 70-1.500	1.500	85,0	VB
45	REpower**)	MD 70-1.500	1.500	65,0	VB
46	REpower**)	MD 77-1.500	1.500	85,0	VB
47	REpower**)	MD 77-1.500	1.500	85,0	VB
48	REpower**)	MD 70-1.500	1.500	65,0	VB
49	REpower**)	MD 70-1.500	1.500	65,0	VB
50	REpower**)	MD 70-1.500	1.500	65,0	VB
51	REpower**)	MD 70-1.500	1.500	65,0	VB
52	REpower**)	MD 70-1.500	1.500	65,0	VB
53	REpower**)	MD 70-1.500	1.500	65,0	VB

^{*)} ZB = Zusatzbelastung; VB = Vorbelastung

3.2 Schallleistungspegel

Für die Immissionsprognose wurden in der Berechnung die Schallleistungspegel unter Berücksichtigung der oberen Vertrauensbereichsgrenze L_O der verschiedenen WEA angesetzt. Die Angaben zum Schallleistungspegel L_{WA} beziehen sich auf den lautesten, mittleren Schallleistungspegel des WEA-Typs im jeweiligen Betriebsmodus. Der Zuschlag ΔL_O zum oberen Vertrauensbereich wurde nach den Hinweisen der LAI [6] berechnet (s.u.). Die Emissionen der einzelnen Schallquellen aller WEA überlagern sich an den Immissionsorten (vgl. Kapitel 2.2) zu einem resultierenden Schalldruckpegel bzw. Beurteilungspegel L_r der nach TA Lärm [3] zu bewerten ist.

^{**)} Die Firma REpower wurde zwischenzeitlich in Senvion umbenannt.

Die Qualität der Prognose wird nach den Hinweisen der LAI [6] wahrscheinlichkeitsmathematisch aus den Unsicherheiten für die Serienstreuung σ_P , die Typvermessung σ_R und die Prognoseunsicherheit σ_{Prog} ermittelt.

Die Unsicherheit der Angabe des Schallleistungspegels, bestehend aus Messunsicherheit und Serienstreuung kann als σ_{WEA} zusammengefasst werden:

$$\sigma_{\text{WEA}} = \sqrt{\sigma_P^2 + \sigma_R^2}$$

Der emissionsseitige Zuschlag ΔL_0 für das 90%-Vertrauensintervall wird in der Berechnung der Schallimmissionsprognose auf den Schallleistungspegel L_{WA} der WEA aufgeschlagen:

$$L_{\text{O}} = L_{\text{WA}} + \Delta L_{\text{O}} \qquad \qquad \text{mit } \Delta L_{\text{O}} = 1,28 \ ^{*} \ \sigma_{\text{ges}}$$

und
$$\sigma_{ges,i} = \sqrt{\sigma^2_{LWA,i} + \sigma^2_{Prog}}$$

Da bei einer Abnahmemessung die Unsicherheit des Prognosemodells keine Berücksichtigung findet empfehlen die LAI-Hinweise [6] die Festschreibung des Emissionspegels der WEA in der Genehmigung mit Beaufschlagung nur der WEA-seitigen Unsicherheiten für Serienstreuung und Messunsicherheit:

$$L_{\text{e,max}} = L_{\text{WA}} + \Delta L_{\text{e,max}} \qquad \qquad \text{mit } \Delta L_{\text{e,max}} = 1,28 \text{ x } \sqrt{\sigma_{P}^{2} + \sigma_{R}^{2}}$$

Für die zu erwartende Messunsicherheit und Serienstreuung gibt der Hersteller Enercon für den Typ E-160 EP5 E2 Werte von 0,5 dB(A) bzw. 1,2 dB(A) an.

Der Zuschlag ΔL_0 wird emissionsseitig auf die Schallpegel der Anlagentypen aufgeschlagen. Der statistische Ausgleich der Unsicherheit durch mehrere Quellen wird bei diesem Verfahren nicht betrachtet. Daher liegen die berechneten Werte über den statistisch wahrscheinlich auftretenden Immissionspegeln. Da bei den Berechnungen auf eine Berücksichtigung von Abschirmwirkungen verzichtet wird, findet die Ungenauigkeit der Bestimmung des Abschirmmaßes σ_{Schirm} bei der Berechnung der Qualität der Prognose keine Berücksichtigung.

3.2.1 Vorbelastung

Für die bestehenden Anlagen (Vorbelastung) mit bekannten Genehmigungspegeln wurden die Oktavspektren aus den Vermessungen bzw. Herstellerprognosen der jeweiligen Anlagentypen

entnommen und ggf. auf den festgelegten Genehmigungswert skaliert oder bei Fehlen von Spektraldaten nach dem LAI Referenzspektrum berechnet. Für die bestehenden WEA ohne bekannten bzw. festgelegten Genehmigungspegel wurden die Schallleistungspegel aus Vermessungen verwendet und mit entsprechenden Zuschlägen für den oberen Vertrauensbereich (ΔL_O) versehen. Da die maximalen Pegel aus den Vermessungen berücksichtigt werden, sind die Angaben unabhängig von der Nabenhöhe, eine Umrechnung ist daher nicht notwendig. Die jeweiligen Auszüge aus den Messberichten sind als Kopien in der Anlage dieses Gutachtens beigefügt.

Tabelle 5: WEA-Schallwerte Vorbelastung 16 und 17²

WEA Daten		WEA Nr.			Typenbezeichnung				Betriebsmodus		
WEA Daten		16, 17				-66-	15.66		0		
Ouelle Schellnegel		(Quelle				Schallpe	gel L _{O,gei}	nehmigt [dl	B(A)]	
Quelle Schallpegel		LFU B	randenbu	ırg				102,0)		
Ovella Oktovanaktriim	Beri	Datum				Тур					
Quelle Oktavspektrum	WIC	11.03.1999			1fach Vermessung						
I la ai ab a sh aita s	σ _{LWA} [dB(A)]					σ _{Prog} [dB(A)]					
Unsicherheiten			1,84			1,0					
Frequenz f [Hz]	63	125	250	500	10	00	2000	4000	8000	ΣL ge- samt	
Lwa okt [dB(A)]	87,2	90,7	93,6	96,6	96	5,8	92,3	83,0	75,9	101,8	
Lo okt [dB(A)] *)	90,1	93,6	96,5	99,5	99	9,7	95,2	85,9	78,8	104,7	

^{*)} Das Oktavspektrum der 1-fach Vermessung wurde auf den Genehmigungspegel von 102,0 dB(A) skaliert und mit einem Zuschlag für den oberen Vertrauensbereich versehen.

_

² Abweichend zu den Angaben des LFU Brandenburg (Enercon E-48) wurde hier der WEA Typ Enercon-E-66-15.66 angewendet. Dies Basiert auf Angaben des Auftraggebers und auf Informationen der Ramboll-Datenbank. Der vom LFU Brandenburg angegebene Schallleistungspegel von 102,0 dB(A) wurde angewendet und liegt nahe bei dem Vermessungsergebnis der WEA Enercon E-66-15.66 mit 101,9 dB(A).

Tabelle 6: WEA-Schallwerte Vorbelastung 40-45, 48-53

		WEA Nr.		Туре	Typenbezeichnung				Betriebsmodus		
WEA Daten	40	Senv	Senvion (Repower) MD70			0					
Ovelle Cabellacael		(Quelle			,	Schallpe	gel Lo,gei	nehmigt [dl	B(A)]	
Quelle Schallpegel		LFU B	randenb	urg				104,0)		
Quelle Oktavspektrum	Beri	Datum				Тур					
Quelle Oktavspekti ulli	V	10.09.2001			1	1fach Vermessung					
Hanish out aiten						$\sigma_{\text{Prog}}\left[\text{dB(A)}\right]$					
Unsicherheiten			1,84			1,0					
Frequenz f [Hz]	63	125	250	500	10	00	2000	4000	8000	ΣL _{ge} -	
Lwa okt [dB(A)]	84,8	90,2	93,1	94,7	96	6,4	96,0	92,1	83,1	102,2	
Lo Okt [dB(A)]	89,3	94,7	97,6	99,2	10	0,9	100,5	96,6	87,6	106,7	

^{*)} Das Oktavspektrum der 1-fach Vermessung wurde auf den Genehmigungspegel von 104,0 dB(A) skaliert und mit einem Zuschlag für den oberen Vertrauensbereich versehen.

Tabelle 7: WEA-Schallwerte Vorbelastung 46 und 47

		WEA Nr.		Туреі	Typenbezeichnung			Betriebsmodus		
WEA Daten	46, 47				Senvion (Repower) MD77			0		
Qualla Saballaggal		(Quelle			Schallpe	gel Lo,ge	nehmigt [d	B(A)]	
Quelle Schallpegel		LFU B	randenb	urg			104,0)		
Ouelle Oktovenektrum	Beri	chtsnum	nmer	Datum			Тур			
Quelle Oktavspektrum	KCE	27053-1	.001	08.05.2003			3fach Vermessung			
Ha a lab a shalta s	σ _{LWA} [dB(A)]					σ _{Prog} [dB(A)]				
Unsicherheiten			1,84			1,0				
Frequenz f [Hz]	63	125	250	500	1000	2000	4000	8000	ΣL ge-	
Lwa okt [dB(A)]	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9	103,0	
Lo okt [dB(A)]	90,8	98,9	99,9	100,5	99,6	96,9	93,2	86,6	106,7	

^{*)} Das Oktavspektrum der 1-fach Vermessung wurde auf den Genehmigungspegel von 104,0 dB(A) skaliert und mit einem Zuschlag für den oberen Vertrauensbereich versehen.

Tabelle 8: WEA-Schallwerte Vorbelastung 25 bis 39

WEA Daten		WEA Nr.	•	Туре	nbez	zeichnung		Betriebsmodus		
WEA Daten		V	'esta	s V8	0		0			
Ouelle Schallnegel		(Quelle			5	Schallpe	gel Lo,ge	nehmigt [dl	3(A)]
Quelle Schallpegel		LFU B	randenbı	urg				101,7	7	
Qualla Oktavenaktrum	Beri	Datum				Тур				
Quelle Oktavspektrum	V	10.09.2004			3fach Vermessung					
III t-I ut - t	σ _{LWA} [dB(A)]					σ _{Prog} [dB(A)]				
Unsicherheiten			0,59			1,0				
Frequenz f [Hz]	63	125	250	500	10	00	2000	4000	8000	∑L _{ge} -
Lwa okt [dB(A)]	85,5	92,6	97,2	98,9	97	,7	95,4	89,7	77,6	104,1
Lo okt [dB(A)]	84,6	91,7	96,3	98,0	96	,8	94,5	88,8	76,7	103,2

^{*)} Das Oktavspektrum der 3-fach Vermessung wurde auf den Genehmigungspegel von 101,7 dB(A) skaliert und mit einem Zuschlag für den oberen Vertrauensbereich versehen.

Tabelle 9: WEA-Schallwerte Vorbelastung 13 bis 15

WEA Daten	WEA Nr.			Typenbezeichnung			Betriebsmodus			
WEA Daten	•	13, 14, 1	5	No	orde	x N1	49		0	
Ouelle Schellnegel		(Quelle				Schallpe	gel Lo,gei	nehmigt [dl	B(A)]
Quelle Schallpegel		LFU B	randenbu	ırg				108,1	1	
Ovelle Oktovenektoven	Beri	Datum					Тур			
Quelle Oktavspektrum	WICC	04.06.2019			1fach Vermessung					
Hanish subsites	σ _{LWA} [dB(A)]				σ _{Prog} [dB(A)]					
Unsicherheiten			0			0				
Frequenz f [Hz]	63	125	250	500	10	00	2000	4000	8000	ΣL _{ge-}
Lwa okt [dB(A)]	88,0	94,2	97,4	100,1	10	0,9	98,5	86,7	63,5	105,9
L _{O Okt} [dB(A)]	90,2	96,4	99,6	102,3	10	3,1	100,7	88,9	65,7	108,1

^{*)} Das Oktavspektrum der 1-fach Vermessung wurde auf den Genehmigungspegel von 108,1 dB(A) skaliert.

3.2.2 Zusatzbelastung

Für die geplanten Anlagen (Zusatzbelastung) des Typs Enercon E-160 EP5 E2 in den Modi 0s, 106,0 dB, 104,5 dB, 102,0 dB und 98,0 dB mit schallmindernden Flügelelementen ("STE") existieren noch keine schalltechnischen Vermessungen nach FGW-Richtlinie [11]. Es wurde das Oktavspektrum aus der Herstellerangabe verwendet und mit entsprechenden Zuschlägen für den oberen Vertrauensbereich (ΔL_0 , siehe oben) versehen. Auszüge aus der Herstellerangabe sind in der Anlage dieses Gutachtens beigefügt. Es wird davon ausgegangen, dass bis zur

Inbetriebnahme mindestens eine Vermessung vorliegt, die den verwendeten Schallleistungspegel der Anlage bestätigt. Eine Ton- oder Impulshaltigkeit liegt laut den o.g. Angaben nicht vor.

Tabelle 10: WEA-Schallwerte Zusatzbelastung WEC1 bis WEC4, WEC6

WEA Daten	,	WEA Nr.	•	Туреі	nbezeich	nung	Betriebsmodus		NH	
WEA Daten	WE	C 01-04	, 06	E-160 EP5 E2			0s		166	
Qualla Oktovanaktrum	Beri	chtsnum	nmer		Datum		Тур			
Quelle Oktavspektrum	D	0921349	-2	2	29.05.2020			Hersteller		
Unsicherheiten	$\sigma_R [dB(A)]$ $\sigma_P [dB(A)]$			$B(A)$] $\sigma_{Prog}[dB(A)]$			ΔL ₀ [dB(A)]			
Unsicherneiten	0	,5	1	,2	1	,0	2,1			
Frequenz f [Hz]	63	125	250	500	1000	2000	4000	8000	∑L gesamt	
Lwa okt [dB(A)]	kt [dB(A)] 87,2		95,2	98,6	101,5	102,4	95,6	75,7	106,8	
Le,max Okt [dB(A)]	88,9	94,4	96,9	100,3	103,2	104,1	97,3	77,4	108,5	
Lo Okt [dB(A)]	89,3	94,8	97,3	100,7	103,6	104,5	97,7	77,8	108,9	

Tabelle 11: WEA-Schallwerte Zusatzbelastung WEC13

WEA Daten	,	WEA Nr.	•	Typer	nbezeich	nung	Betriebsmodus		NH
WEA Daten		WEC 13		E-′	160 EP5	E2	106,0 dB		166
Ouelle Oktovenektrum	Beri	chtsnum	nmer	Datum			Тур		
Quelle Oktavspektrum	D	0959532	-1	03.06.2020			Hersteller		
Unsicherheiten	σ_R [dB(A)] σ_P [dB			$B(A)$] $\sigma_{Prog}[dB(A)]$			Δ	Lo [dB(A	A)]
Unsicherneiten	0	,5	1	,2	1,0		2,1		
Frequenz f [Hz]	63	125	250	500	1000	2000	4000	8000	∑L gesamt
Lwa okt [dB(A)]	86,5	92,0	94,6	98,1	100,7	100,7 101,5		74,8	106,0*
Le,max Okt [dB(A)]	88,2	93,7	96,3	99,8	102,4	103,2	96,4	76,5	107,7
Lo okt [dB(A)]	88,6	94,1	96,7	100,2	102,8	103,6	96,8	76,9	108,1

Tabelle 12: WEA Schallwerte Zusatzbelastung WEC5, WEC7, WEC10 und WEC11

WEA Daten		WEA Nr.	•	Туре	nbezeich	nnung	Betriebsmodus NH		
WEA Dateii	WEC	05, 07, 1	10, 11	E-	160 EP5	E2	104,5 dB		166
Ouelle Oktovenektrum	Beri	chtsnun	nmer		Datum		Тур		
Quelle Oktavspektrum	D	0959532	:-1	C	7.05.202	20	Hersteller		
l lu ai ab aub aitau	σ_R [dB(A)] σ_P [dB			$B(A)$] $\sigma_{Prog}[dB(A)]$			Δ	Lo [dB(A	4)]
Unsicherheiten	0,	,5	1,	2	1,0		2,1		
Frequenz f [Hz]	63	125	250	500	1000	2000	4000	8000	∑L gesamt
Lwa Okt [dB(A)]	85,1	90,6	93,2	96,7	99,2	99,8	93,0	73,1	104,5
Le,max Okt [dB(A)]	86,8	92,3	94,9	98,4	100,9	101,5	94,7	74,8	106,2
Lo okt [dB(A)]	87,2	92,7	95,3	98,8	101,3	101,9	95,1	75,2	106,6

Tabelle 13: WEA-Schallwerte Zusatzbelastung WEC9

WEA Daten	,	WEA Nr.	•	Type	nbezeich	nnung	Betriebsmodus NH		NH	
WEA Daten		WEC 09		E-	160 EP5	E2	102,0 dB		166	
Qualla Oktovanaktrum	Beri	chtsnun	nmer	Datum			Тур			
Quelle Oktavspektrum	D	0959532	-1	0	7.05.202	20	Hersteller			
Unsicherheiten	$\sigma_R[dB(A)]$ $\sigma_P[dE$			$B(A)$] $\sigma_{Prog}[dB(A)]$			ΔL ₀ [dB(A)]			
Unsicherneiten	0,5		1,	2	1,0		2,1			
Frequenz f [Hz]	63	125	250	500	1000	2000	4000	8000	∑L gesamt	
Lwa okt [dB(A)]	82,9	88,4	91,2	94,6	96,6	96,6 97,0		70,3	102,0	
Le,max Okt [dB(A)]	84,6	90,1	92,9	96,3	98,3	98,7	91,8	72,0	103,7	
Lo Okt [dB(A)]	85,0	90,5	93,3	96,7	98,7	99,1	92,2	72,4	104,1	

Tabelle 14: WEA-Schallwerte Zusatzbelastung WEC12

WEA Daten	,	WEA Nr.		Туре	nbezeich	nnung	Betriebsmodus NF		NH	
WEA Daten		WEC 12		E-	160 EP5	E2	98,0	98,0 dB		
Ouelle Oktovenektrum	Beri	chtsnun	nmer	Datum			Тур			
Quelle Oktavspektrum	D	0959532	-1	07.05.2020			Hersteller			
Unsicherheiten	σ_R [dB(A)] σ_P [dE			$B(A)$] $\sigma_{Prog}[dB(A)]$				ΔL ₀ [dB(A)]		
Unsicherneiten	0,5		1,	,2	1,0		2,1			
Frequenz f [Hz]	63	125	250	500	1000	2000	4000	8000	∑L gesamt	
Lwa okt [dB(A)]	80,0	85,4	88,1	91,0	0 92,4 92,6		85,7	66,1	98,0	
Le,max Okt [dB(A)]	81,7	87,1	89,8	92,7	94,1	94,3	87,4	67,8	99,7	
Lo okt [dB(A)]	82,1	87,5	90,2	93,1	94,5	94,7	87,8	68,2	100,1	

Hinweis: Das Oktavspektrum einer möglichen Abnahmemessung kann von dem der Prognose zugrundeliegenden Spektrum im Allgemeinen abweichen. Entscheidend im Falle der Abweichung ist der Nachweis auf Nichtüberschreitung der Immissionsrichtwerte bzw. der Teilimmissionspegel durch eine der Abnahmemessung folgende Ausbreitungsrechnung entsprechend dem Interimsverfahren mit dem gemessenen Oktavspektrum bzw. des Schallleistungspegels auf Basis von Le,max (sieje oben sowie Kapitel0).³

_

³ Dabei ist bei der Abnahmemessung nach LAI-Hinweisen (5.2) die Messunsicherheit, nicht jedoch die Unsicherheit des Prognosemodells zu berücksichtigen [6]. In der Rechtsprechung [13] und laut LANUV NRW, zugestimmt durch den AK *LAI-Hinweise* des FGW, soll auch die Messunsicherheit nicht berücksichtigt werden, da sie bereits im genehmigten Pegel zu Lasten des Betreibers enthalten ist [14], [15].

4 Ergebnisse der Immissionsberechnungen

4.1 Beurteilungspegel an den Immissionsorten

Die basierend auf den in den vorigen Kapiteln genannten Kenn- und Eingangsdaten ermittelten Beurteilungspegel nach dem oberen Vertrauensbereich sind den folgenden Tabellen zu entnehmen.

Tabelle 15: Beurteilungspegel (L_r) Vorbelastung durch 34 WEA und drei Gewerbebetriebe

Ю	Bezeichnung	L _r Gewerbe [dB(A)]	L _r WEA [dB(A)]
B01	Beeskow, Radinkendorf Ausbau 2	13,0	33,4
B02	Beeskow, Radinkendorf 33	16,5	32,3
B03	Beeskow, Radinkendorf 36	17,7	32,2
B04	Beeskow, Radinkendorfer Straße 37	31,1	33,2
B05	Beeskow, Waldweg 2a	32,2	32,9
B06	Beeskow, Schützenstraße 28	26,4	31,9
R01	Rietz-Neuendorf, Schrödershof 2	9,9	39,9
R02	Rietz-Neuendorf, Feldweg 2	15,6	38,4
R03	Rietz-Neuendorf, Beeskower Chaussee 1	18,9	42,5
R04	Rietz-Neuendorf, Kreuzberge 2	22,5	44,7

Die gewerbliche Vorbelastung unterschreitet an den Immissionsorten B01 bis B03 und R01 bis R04 den jeweiligen Immissionsrichtwert um mindestens 15 dB(A). Nach Ziffer 2.2 a) TA-Lärm [3] ist die gewerbliche Vorbelastung an diesen Immissionsorten nicht mehr relevant und wird für diese im Folgenden nicht weiter berücksichtigt.

Tabelle 16: Beurteilungspegel (L_r) Zusatzbelastung durch 12 WEA

Ю	Bezeichnung	L _r [dB(A)]
B01	Beeskow, Radinkendorf Ausbau 2	40,1
B02	Beeskow, Radinkendorf 33	39,9
B03	Beeskow, Radinkendorf 36	40,0

Ю	Bezeichnung	L _r [dB(A)]
B04	Beeskow, Radinkendorfer Straße 37	36,6
B05	Beeskow, Waldweg 2a	35,7
B06	Beeskow, Schützenstraße 28	26,9
R01	Rietz-Neuendorf, Schrödershof 2	36,7
R02	Rietz-Neuendorf, Feldweg 2	35,8
R03	Rietz-Neuendorf, Beeskower Chaussee 1	40,8
R04	Rietz-Neuendorf, Kreuzberge 2	41,8

Tabelle 17: Beurteilungspegel (L_r) Gesamtbelastung durch 46 WEA und drei Gewerbebetriebe

Ю	Bezeichnung	IRW nacht [dB(A)]	L _r ungerundet [dB(A)]	L _r gerundet ^{*)} [dB(A)]
B01	Beeskow, Radinkendorf Ausbau 2	45	40,9	41
B02	Beeskow, Radinkendorf 33	45	40,6	41
B03	Beeskow, Radinkendorf 36	40	40,6	41
B04	Beeskow, Radinkendorfer Straße 37	45	39,0	39**)
B05	Beeskow, Waldweg 2a	40	38,6	39**)
B06	Beeskow, Schützenstraße 28	35	33,9	34**)
R01	Rietz-Neuendorf, Schrödershof 2	45	41,6	42
R02	Rietz-Neuendorf, Feldweg 2	43	40,3	40
R03	Rietz-Neuendorf, Beeskower Chaussee 1	45	44,8	45
R04	Rietz-Neuendorf, Kreuzberge 2	45	46,5	46

^{*)} Es wurden die Rundungsregeln gemäß Nr. 4.5.1 DIN 1333 [7] angewendet.

Im Anhang liegen für die oben genannten Beurteilungspegel Ausdrucke der Berechnungssoftware windPRO vor (Hauptergebnis, Detaillierte Ergebnisse). Weiterhin ist im Anhang eine **Isophonenkarte** für den Beurteilungspegel der Gesamtbelastung wiedergegeben.

^{**)} inklusive relevanter gewerblicher Vorbelastung

4.2 Vergleichswerte für Abnahme- / Überwachungsmessungen

Nach LAI-Hinweisen Nr. 5.2 [6] (ausführlich z: Bsp. in Agatz [12]) erfolgt die Kontrolle des genehmigungskonformen Betriebes über den Abgleich der Abnahme- / Überwachungsmessung (Immissionsmessung) mit den sogenannten Vergleichswerten (Teilimmissionspegel jeder WEA an jedem IO auf Basis von L_{e,max}). Diese können dem Anhang entnommen werden (Berechnung Zusatzbelastung mit L_{e,max}, Detaillierte Ergebnisse).

4.3 Bewertung der Ergebnisse

Die Nacht-Immissionsrichtwerte nach TA Lärm [3] werden unter Berücksichtigung des oberen Vertrauensbereichs an den Immissionsorten B01, B02, B04 bis B06 und R01 bis R03 eingehalten.

An den Immissionsorten B03 und R04 wird der nächtliche Immissionsrichtwert um 1 dB(A) überschritten. Nach dem Irrelevanzkriterium in Ziffer 3.2.1 Absatz 3 TA Lärm [3] ist eine Überschreitung um bis zu 1 dB(A) aufgrund der bestehenden Vorbelastung nicht als erhebliche Umwelteinwirkung i. S. d. Schutzzwecks des BImSchG [1] anzusehen.

Da die berechneten Beurteilungspegel auf einem noch nicht nach FGW-Richtlinie [11] vermessenen Schallleistungspegel für die WEA Enercon E-160 EP5 E2 von 106,8 dB, 106,0 dB, 104,5 dB, 102,0 dB und 98 dB basieren, sollten diese Werte durch eine Vermessung des WEA-Typs bestätigt werden. Im Falle einer Abnahmemessung (Emissionsmessung) darf dabei - unter Berücksichtigung der Messunsicherheit - der L_{e.max} nicht überschritten werden.

Im Tagbetrieb können die WEA mit dem maximalen Schallleistungspegel betrieben werden, da während des Tagzeitraums (6-22 Uhr) die Immissionsrichtwerte der in diesem Gutachten relevanten Immissionsorte entsprechend Ziffer 6.1 TA-Lärm [3] 15 dB(A) (bei Immissionsort B06 10 dB(A)) über den Immissionsrichtwerten für den Nachtzeitraum (22-6 Uhr) liegen. So werden auch bei einem höheren Emissionspegel für die WEA im Tagbetrieb die Immissionsrichtwerte weit unterschritten. Entsprechend liegt der Immissionspegel an den relevanten Immissionsorten um mehr als 10 dB(A) unter dem Immissionsrichtwert, womit diese nach Ziffer 2.2 a) TA Lärm [3] nicht mehr im Einwirkungsbereich der geplanten WEA liegen.

Die detaillierten, auf Grundlage der in Kapitel 1 beschriebenen Daten erzielten Ergebnisse für den Standort Groß Rietz sind in Kapitel 4 wiedergegeben. Änderungen an den Positionen der Anlagen, dem Anlagentyp, den im Schallvermessungsbericht des Anlagentyps genannten

Anlagenspezifikationen oder sonstigen relevanten Einflussfaktoren für die Schallberechnung erfordern ein neues Gutachten.

Die vorliegenden Schallimmissionsprognose wurde konservativ angesetzt, so dass die berechneten Ergebnisse auf der "Sicheren Seite" liegen. Weitere Informationen zu den theoretischen Grundlagen sind der "Anlage zur Schallimmissionsprognose der Ramboll Deutschland GmbH" zu entnehmen.

5 Literaturverzeichnis

- [1] BlmSchG, Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (BlmSchG) in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBl. I S. 1274), das durch Artikel 1 des Gesetzes vom 2. Juli.
- [2] Norm, "DIN EN ISO/IEC 17025:2005-08, Allgemeine Anforderungen an die Kompetenz von Prüfund Kalibrierlaboratorien," 2005.
- [3] TA_Lärm, Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm), (GMBI S. 503), 1998.
- [4] Norm, DIN ISO 9613-2:1999-10, Akustik Dämpfung des Schalls bei der Ausbreitung im Freien Teil 2: Allgemeines Berechnungsverfahren.
- [5] NALS im DIN und VDI, Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen, Unterausschuss NA 001-02-03-19 UA "Schallausbreitung im Freien", 2015.
- [6] LAI, Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz, Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA), Überarbeiteter Entwurf vom 17.03.2016 mit Änderungen PhysE vom 23.06.2016,.
- [7] Norm, DIN 1333:1992-02, Zahlenangaben.
- [8] EMD, EMD International A/S, windPRO 3.3 (jeweils aktuellste Version).
- [9] geoGLIS_oHG, onmaps GEOBasis-DE / BKG / NRW, 2018.
- [10] Hoffmann/von_Lüpke, 0 Dezibel + 0 Dezibel = 3 Dezibel Einführung in die Grundbegriffe und quantitative Erfassung des Lärms,, Erich Schmidt Verlag, 1993.
- [11] FGW_e.V., Fördergesellschaft Windenergie und andere Dezentrale Energien, Technische Richtlinien für Windenergieanlagen, Revision 18 Hrsg.
- [12] M. Agatz, Windenergie Handbuch 14. Auflage, Gelsenkirchen, 2017.
- [13] Urteil, BVerwG 4 C 2.07, 2007.
- [14] Dipl.-Ing._Detlef_Piorr_(LANUV_NRW), Festlegung von Abnahmebedingungen für Windenergieanlagen, (Entwurf, Stand: Korrektur 1, 13.02.2018).
- [15] FGW_Fördergesellschaft_Windenergie, Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA) Überarbeiter Entwurf vom 17.03.2016 mit Änderungen PhysE vom 23.06.2016 Stand 30.06.2016 – Stellungnahme des FGW e. V., Berlin, 27. März 2018.

6 Anhang

- Isophonenkarte Gesamtbelastung WEA
- Berechnungsausdrucke Vorbelastung Gewerbe: Hauptergebnis
- Berechnungsausdrucke Vorbelastung WEA: Hauptergebnis
- Berechnungsausdrucke Zusatzbelastung: Hauptergebnis
- Berechnungsausdrucke Gesamtbelastung: Hauptergebnis, Detaillierte Ergebnisse und Annahmen zur Schallberechnung
- Energetische Addition für die IO B04, B05 und B06
- Berechnungsausdrucke Zusatzbelastung L_{e,max}: Hauptergebnis, Detaillierte Ergebnisse und Annahmen zur Schallberechnung
- Auszug aus den Herstellerangaben und Messberichten zur Ermittlung der Schallleistungspegel und der Oktavspektren der WEA

18-1-3048

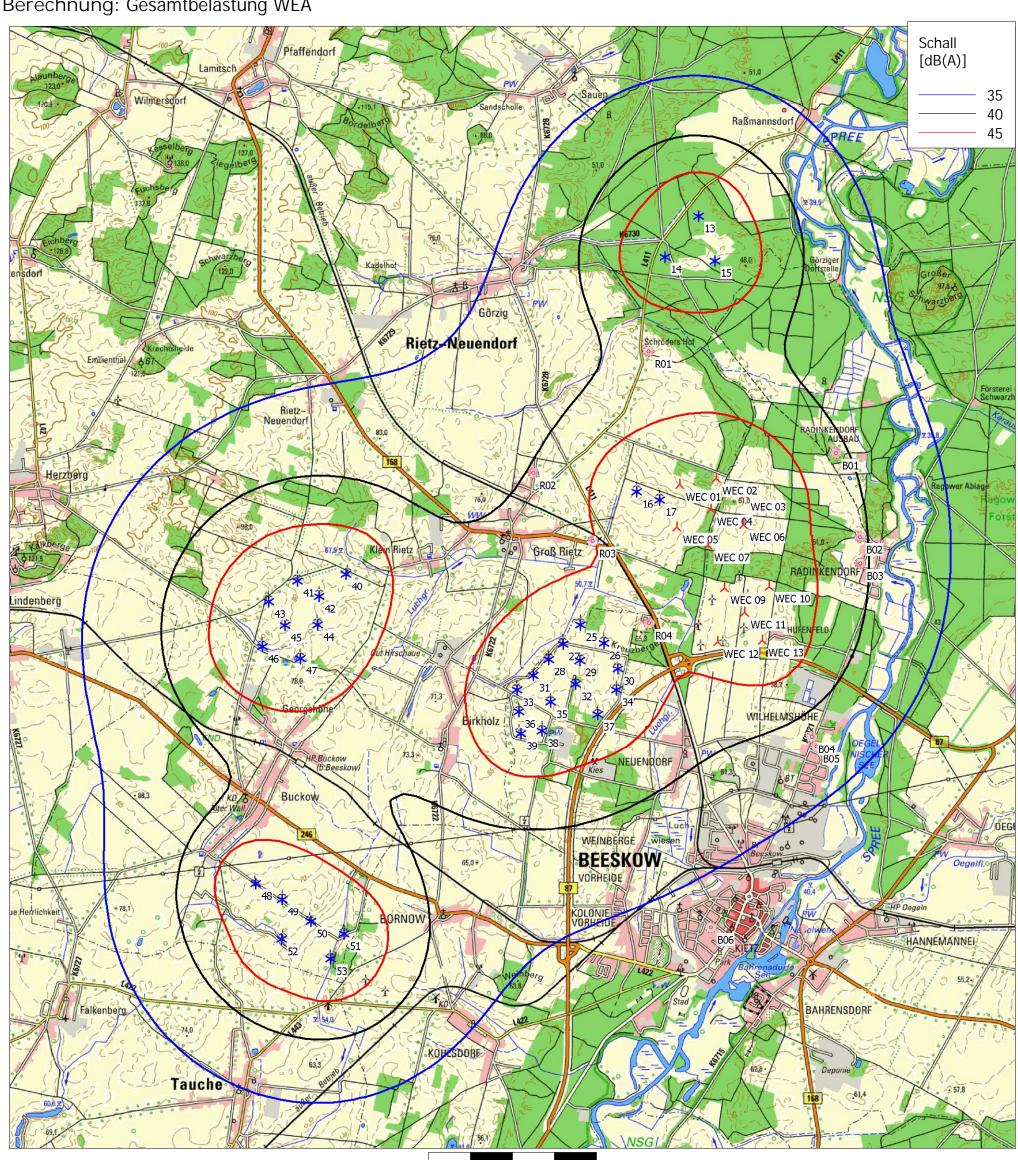
Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

Lizenzierter Anwender:


Jonas Feja / jonas.feja@ramboll.com

RAMBOLL

05.06.2020 09:56/3.3.289

DECIBEL - Karte Lautester Wert bis 95% Nennleistung

Berechnung: Gesamtbelastung WEA

0 500 1000 1500 2000 m

Karte: TK50, Maßstab 1:45.000, Mitte: UTM (north)-WGS84 Zone: 33 Ost: 445.778 Nord: 5.784.354

* Existierende WEA Schall-Immissionsort

Schallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren). Windgeschwindigkeit: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

18-1-3048-003

26605 Aurich

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg RAMBOLL

+49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

19.05.2020 10:31/3.3.274

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung WEA ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä. : 35 dB(A) Gewerbegebiet: 50 dB(A)

Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

B03 B04 B06

Maßstab 1:200.000 * Existierende WEA Schall-Immissionsort

WEA

		•														
						WEA	ayT-					Schall	lwerte			
	(Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Tvp	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
					· ·	tu-		J.	leistung	durch-	höhe			schwin-		zel-
						ell				messer				digkeit		ton
				[m	1				[kW]	[m]	[m]			[m/s]	[dB(A)]	
1	3 44	7.989	5.788.773	43,	,4 NORDEX N149/4	Ja	NORDEX	N149/4.0-4.5-4.500	4.500	149,0	164,0	USER	Genehmigungspegel 108,1 dB(A)	(95%)		Nein
1	4 44	7.591	5.788.292	43	8 NORDEX N149/4	Ja	NORDEX	N149/4.0-4.5-4.500	4.500	149,0	164,0	USER	Genehmigungspegel 108,1 dB(A)	(95%)	108,1	Nein
1	5 44	8.184	5.788.243	42	,7 NORDEX N149/4	Ja	NORDEX	N149/4.0-4.5-4.500	4.500	149,0	164,0	USER	Genehmigungspegel 108,1 dB(A)	(95%)	108,1	Nein
1	6 44	7.255	5.785.494	65,	,0 ENERCON E-66/1	Nein	ENERCON	E-66/15.66-1.500	1.500	66,0	67,0	USER	Genehmigungspegel 102,0 dB(A) + 2,68 dB(A) SZ	(95%)	104,7	Nein
1	7 44	7.526	5.785.397	64	,7 ENERCON E-66/1	Nein	ENERCON	E-66/15.66-1.500	1.500	66,0	67,0	USER	Genehmigungspegel 102,0 dB(A) + 2,68 dB(A) SZ	(95%)	104,7	Nein
2	5 44	6.585	5.783.913	56	,8 VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
2	6 44	6.865	5.783.698	55,	,7 VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
2	7 44	6.376	5.783.686	57	,7 VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
2	8 44	6.207	5.783.500	58,	,0 VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
2	9 44	6.580	5.783.490	60,	,0 VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
3					,0 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
-					,3 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
					,7 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
					,5 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
3					,2 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
3					,9 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
3					,0 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
3					,0 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0		RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
					,0 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)		
					,0 VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
					,0 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
					,0 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
					,0 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		
4					,7 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
4					,0 REpower MD 70 1			MD 70-1.500	1.500	70,0	85,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
					,0 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		
					,3 REpower MD 77 1			MD 77-1.500	1.500	77,0	85,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		
					,0 REpower MD 77 1			MD 77-1.500	1.500	77,0	85,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
					,7 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
					,0 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		Nein
					,9 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		
					,9 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		Nein
					,1 REpower MD 70 1			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)		Nein
5	ا 44 ک	3.610	5.779.934	57,	,5 REpower MD 70 1	. Nein	KEpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	Nein

Berechnungsergebnisse

Beurteilungspegel

	3-1-3-							
Scha	all-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkt-	Schall	Von WEA	Schall
					höhe			
				[m]	[m]	[dB(A)]	[dB(A)]	
B01	Beeskow, Radinkendorf Ausbau 2	449.625	5.785.955	42,5	5,0	45,0	33,4	Ja
B02	Beeskow, Radinkendorf 33	449.911	5.784.952	42,5	5,0	45,0	32,3	Ja
B03	Beeskow, Radinkendorf 36	449.916	5.784.646	42,5	5,0	40,0	32,2	Ja
B04	Beeskow, Radinkendorfer Straße 37	449.338	5.782.577	43,5	5,0	45,0	33,2	Ja
B05	Beeskow, Waldweg 2a	449.396	5.782.461	43,0	5,0	40,0	32,9	Ja
B06	Beeskow, Schützenstraße 28	448.137	5.780.307	42,5	5,0	35,0	31,9	Ja
R01	Reitz-Neuendorf, Schrödershof 2	447.397	5.787.167	57,2	5,0	45,0	39,9	Ja

(Fortsetzung nächste Seite)...

18-1-3048-003

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

19.05.2020 10:31/3.3.274

Jonas Feja / jonas.feja@ramboll.com

RAMBOLL

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung WEA

...(Fortsetzung von letzter Seite)

Scha	all-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkt-	Schall	Von WEA	Schall
					höhe			
				[m]	[m]	[dB(A)]	[dB(A)]	
R02	Reitz-Neuendorf, Feldweg 2	446.025	5.785.719	65,0	5,0	43,0	38,4	Ja
R03	Rietz-Neuendorf, Beeskower Chaussee 1	446.730	5.784.909	57,5	5,0	45,0	42,5	Ja
R04	Rietz-Neuendorf Kreuzherge 2	447 399	5 783 930	54 5	5.0	45.0	44 7	la

Abstände (m)										
B01	B02	B03	B04	B05	B06	R01	R02	R03	R04	
3259	4278	4556	6341	6468	8468	1712	3631	4064	4879	
3099	4067	4325	5976	6105	8005	1142	3012	3491	4367	
2705	3717	3993	5783	5908	7937	1333	3321	3637	4384	
2415	2711	2794	3585	3713	5262	1679	1250	786	1571	
2172	2427		3352	3482	5127	1774	1534	933	1473	
									814	
				2818				1218	582	
4209	3979		3264		3732			1503	1267	
3918	3638		2905		3544			1427	930	
8511	8055	/872	6308	6314	4543	8164	6269	5872	5507	
	B01 3259 3099 2705 2415 2172 3663 3566 3963 4209	B01 B02 3259 4278 3099 4067 2705 3717 2415 2711 363 3485 3566 3295 3963 3755 4209 3979 3918 3638 3653 3281 4471 4222 4143 3808 4729 4469 3842 3419 4505 4169 4870 4560 4209 3766 4811 4428 5022 4664 6004 6131 6584 6712 6978 7077 6499 6539 6870 6923 7204 7230 6826 6814 8594 8284 8460 8110 8371 7973 8186 7744 8774 8381	B01 B02 B03 3259 4278 4556 3099 4067 4325 2705 3717 3993 2415 2711 2794 2172 2260 3663 3411 3566 3295 3195 3963 3755 3668 4209 3979 3882 3918 3638 3531 3653 3281 3150 4471 4222 4117 4143 3808 3622 4729 4469 4358 3842 3419 3271 4505 4169 4038 4870 4560 4433 4209 3766 3607 4811 4428 4281 5022 4664 4523 6004 6131 6122 6584 6712 6701 6479 6539 6502 6870 6923 6888<	B01 B02 B03 B04 3259 4278 4556 6341 3099 4067 4325 5976 2705 3717 3993 5783 2415 2711 2794 3585 2172 2427 2506 3352 3663 3485 3411 3060 3566 3295 3195 2715 3963 3755 3668 3163 4209 3979 3882 3264 3918 3638 3531 2905 3653 3281 3150 2445 4471 4222 4117 3395 4143 3808 3682 2878 4729 4469 4358 3555 3842 3419 3271 2390 4505 4169 4038 3134 4870 4560 4433 3500 4209 3766 3607 2561	B01 B02 B03 B04 B05 3259 4278 4556 6341 6468 3099 4067 4325 5976 6105 2705 3717 3993 5783 5908 2415 2711 2794 3585 3713 2172 2427 2506 3352 3482 3663 3485 3411 3060 3165 3566 3295 3495 2715 2818 3963 3755 3668 3163 3260 4209 3979 3882 3264 3355 3918 3638 3531 2905 2999 3653 3281 3150 2445 2541 4471 4222 4117 3395 3478 4143 3808 3622 2872 2962 4729 4469 4358 3555 3632 3842 3419 3271 2390 2476<	B01 B02 B03 B04 B05 B06 3259 4278 4556 6341 6468 8468 3099 4067 4325 5976 6105 8005 2705 3717 3993 5783 5908 7937 2415 2711 2794 3585 3713 5262 2172 2427 2506 3352 3482 5127 3663 3485 3411 3060 3165 3927 3963 3755 3668 3163 3260 3811 4209 3979 3882 264 3355 3732 3918 3638 3531 2905 2999 3544 3653 3281 3150 2445 2541 3271 4471 4222 4117 3395 3478 3671 4474 4222 4117 3395 3478 3671 4473 3808 3682 2	B01 B02 B03 B04 B05 B06 R01 3259 4278 4556 6341 6468 8468 1712 3099 4067 4325 5976 6105 8005 1142 2705 3717 3993 5783 5908 7937 1333 2415 2711 2794 3585 3713 5262 1679 2172 2427 2506 3352 3482 5127 1774 3663 3485 3411 3060 3165 3927 3353 3566 3295 3411 3060 3165 3927 3553 3663 3755 3668 3163 3620 3811 3627 4209 3979 3882 2864 3355 3732 3855 3918 3638 3531 2905 2999 3544 3766 3653 3281 3150 2445 2541 3271	B01 B02 B03 B04 B05 B06 R01 R02 3259 4278 4556 6341 6468 8468 1712 3631 3099 4067 4325 5976 6105 8005 1142 3012 2705 3717 3993 5783 5908 7937 1333 3321 2415 2711 2794 3585 3713 5262 1679 1250 3175 2506 3352 3482 5127 1774 1534 3663 3485 3411 3060 3165 3927 3353 1891 3663 3755 3668 3163 3260 3811 3627 2063 4209 3979 3882 3264 3355 3732 3855 2226 3918 3638 3531 2905 2999 3544 3766 2297 3653 3281 3150 2445 2541	B01 B02 B03 B04 B05 B06 R01 R02 R03 3259 4278 4556 6341 6468 8468 1712 3631 4064 3099 4067 4325 5976 6105 8005 1142 3012 3491 2705 3717 3993 5783 5908 7937 1333 3321 3637 2415 2711 2794 3585 3713 5262 1679 1250 786 3163 3481 3060 3165 3927 3353 1891 1006 3663 3485 3411 3060 3165 3927 3353 1891 1008 3663 3755 3668 3163 3260 3811 3627 2063 1273 4209 3979 3882 3264 3355 3732 3855 2226 1503 3918 3638 3531 2905 2949	B01 B02 B03 B04 B05 B06 R01 R02 R03 R04 3259 4278 4556 6341 6468 8468 1712 3631 4064 4879 3099 4067 4325 5976 6105 8005 1142 3012 3491 4367 2705 3717 3993 5783 5908 7937 1333 3321 3637 4384 2415 2711 2794 3585 3713 5262 1679 1250 786 1571 2172 2427 2506 3352 3482 5127 1774 1534 933 1473 3663 3485 3411 3060 3165 3927 3353 1891 1006 814 3963 3755 3668 3163 3260 3811 3627 2063 1273 1052 4209 3979 3882 3264 3355 3732

Projekt:

Reschreihung

18-1-3048-003

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich Lizenzierter Anwender:
Ramboll GmbH
Stadtdeich 7
DE-20097 Hamburg
+49 40 302020-132
Timo Mertens / timo.mertens@ramboll.com
Berechnet:
19.05.2020 10:31/3.3.274

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung Gewerbe

ISO 9613-2 Deutschland

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung

Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä.: 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

Maßstab 1:125.000

★ Existierende WEA

Maßstab 1:125.000

Schall-Immissionsort

WEA

					WEA	-Тур					Schall	werte			
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
					tu-			leistung	durch-	höhe			schwin-		zel-
					ell				messer				digkeit		ton
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
54	445.143	5.783.592	67,5	ABC Schweine	Nein	ABC	Schweinemastanlage-1/1	1	1,0	5,0	USER	LWA 95 dB(A)	(95%)	95,0	Nein
55	446.326	5.782.555	65,0	ABC Biogasanl	. Nein	ABC	Biogasanlage-1/1	1	1,0	5,0	USER	BHKW 101 dB(A)	(95%)	101,0	Nein
56	449.175	5.781.544	43,6	ABC Spanplatt	Nein	ABC	Spanplattenwerk-1/1	1	1,0	10,0	USER	LWA 106 dB(A)	(95%)	106,0	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkt-	Schall	Von WEA	Schall
				höhe			
			[m]	[m]	[dB(A)]	[dB(A)]	
B01 Beeskow, Radinkendorf Ausbau 2	449.625	5.785.955	42,5	5,0	45,0	13,0	Ja
B02 Beeskow, Radinkendorf 33	449.911	5.784.952	42,5	5,0	45,0	16,5	Ja
B03 Beeskow, Radinkendorf 36	449.916	5.784.646	42,5	5,0	40,0	17,7	Ja
B04 Beeskow, Radinkendorfer Straße 37	449.338	5.782.577	43,5	5,0	45,0	31,1	Ja
B05 Beeskow, Waldweg 2a	449.396	5.782.461	43,0	5,0	40,0	32,2	Ja
B06 Beeskow, Schützenstraße 28	448.137	5.780.307	42,5	5,0	35,0	26,4	Ja
R01 Reitz-Neuendorf, Schrödershof 2	447.397	5.787.167	57,2	5,0	45,0	9,9	Ja
R02 Reitz-Neuendorf, Feldweg 2	446.025	5.785.719	65,0	5,0	43,0	15,6	Ja
R03 Rietz-Neuendorf, Beeskower Chaussee 1	446.730	5.784.909	57,5	5,0	45,0	18,9	Ja
R04 Rietz-Neuendorf, Kreuzberge 2	447.399	5.783.930	54,5	5,0	45,0	22,5	Ja

Abstände (m)

	WEA		
Schall-Immissionsort	54	55	56
B01	5067	4738	4434
B02	4959	4313	3487
B03	4888	4155	3189
B04	4316	3012	1046
B05	4402	3072	943
B06	4446	2888	1615
R01	4226	4734	5897
R02	2303	3178	5229
R03	2063	2388	4159
R04	2281	1744	2974

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com 05.06.2020 09:31/3.3.289

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä.: 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

Maßstab 1:125.000 Schall-Immissionsort

WEA

					WEA	-Тур					Schal	lwerte			
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
					tu-			leistung	durch-	höhe			schwin-		zel-
					ell				messer				digkeit		ton
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
WEC 01	447.766	5.785.579	55,	3 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	Nein
WEC 02	448.201	5.785.656	52,	5 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	Nein
WEC 03	448.539	5.785.463	53,	1 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	Nein
WEC 04	448.139	5.785.283	49,0	D ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	Nein
WEC 05	447.732	5.785.075	56,	4 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%)	106,6	Nein
WEC 06	448.527	5.785.100	52,	5 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	Nein
WEC 07	448.103	5.784.864	47,	5 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%)	106,6	Nein
WEC 09	448.296	5.784.353	49,	7 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 102,0dB - Lwa: 102,0 dB(A) + 2,1 dB(A) OVB	(95%)	104,1	Nein
WEC 10	448.832	5.784.371	48,	4 ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%)	106,6	Nein
WEC 11	448.538	5.784.060	50,0	D ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%)	106,6	Nein
WEC 12	448.219	5.783.711	48,	B ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 98,0dB - Lwa: 98,0 dB(A) + 2,1 dB(A) OVB	(95%)	100,1	Nein
WEC 13	448.747	5.783.733	50,0	D ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 106,0dB - Lwa: 106,0 dB(A) + 2,1 dB(A) OVB	(95%)	108,1	Nein

Berechnungsergebnisse

Beurteilungspegel

Scha	all-Immissionsort					Anforderung	Beurteilungspegel
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA
				[m]	[m]	[dB(A)]	[dB(A)]
B01	Beeskow, Radinkendorf Ausbau 2	449.625	5.785.955	42,5	5,0	45,0	40,1
B02	Beeskow, Radinkendorf 33	449.911	5.784.952	42,5	5,0	45,0	39,9
B03	Beeskow, Radinkendorf 36	449.916	5.784.646	42,5	5,0	40,0	40,0
B04	Beeskow, Radinkendorfer Straße 37	449.338	5.782.577	43,5	5,0	45,0	36,6
B05	Beeskow, Waldweg 2a	449.396	5.782.461	43,0	5,0	40,0	35,7
B06	Beeskow, Schützenstraße 28	448.137	5.780.307	42,5	5,0	35,0	26,9
R01	Reitz-Neuendorf, Schrödershof 2	447.397	5.787.167	57,2	5,0	45,0	36,7
R02	Reitz-Neuendorf, Feldweg 2	446.025	5.785.719	65,0	5,0	43,0	35,8
R03	Rietz-Neuendorf, Beeskower Chaussee 1	446.730	5.784.909	57,5	5,0	45,0	40,8
R04	Rietz-Neuendorf, Kreuzberge 2	447.399	5.783.930	54.5	5.0	45.0	41.8

Abstände (m)

WEA	B01	B02	B03	B04	B05	B06	R01	R02	R03	R04
WEC 01	1897	2235	2344	3388	3519	5285	1630	1746	1234	1690
WEC 02	1455	1849	1990	3282	3411	5350	1712	2177	1650	1903
WEC 03	1193	1464	1601	2994	3122	5172	2052	2527	1892	1911
WEC 04	1631	1803	1888	2959	3089	4976	2025	2158	1458	1542
WEC 05	2088	2183	2226	2969	3099	4786	2119	1824	1015	1193
WEC 06	1392	1392	1461	2650	2779	4809	2356	2577	1807	1625
WEC 07	1873	1810	1826	2599	2729	4558	2409	2247	1374	1170
WEC 09	2082	1723	1646	2059	2189	4050	2954	2650	1662	992
WEC 10	1772	1226	1118	1864	1992	4123	3143	3114	2170	1500
WEC 11	2185	1638	1497	1685	1815	3775	3310	3011	1997	1147

Dreekamp 5

26605 Aurich

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Enercon IPP GmbH

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:31/3.3.289

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung

...(Fortsetzung von letzter Seite)
WEA B01 B02 B03 B04 B05 B06 R01 R02 R03 R04
WEC 12 2648 2099 1937 1593 1717 3405 3553 2974 1911 849 WEC 13 2389 1686 1483 1298 1428 3480 3690 3369 2335 1362

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

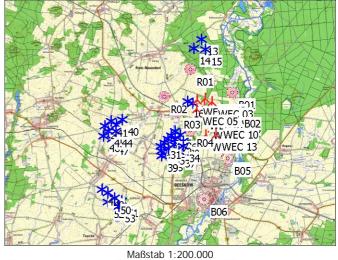
Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com 05.06.2020 09:28/3.3.289

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung WEA ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB


Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä.: 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

* Existierende WEA Schall-Immissionsort

WEA

					WEA	-avT-					Schal	lwerte			
	Ost	Nord	Z	Beschreibung		Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
				•	tu-		•	leistung	durch-	höhe			schwin-		zel-
					ell				messer				digkeit		ton
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
13	447.989	5.788.773	43,4	NORDEX N149/4.0	Ja	NORDEX	N149/4.0-4.5-4.500	4.500	149,0	164,0	USER	Genehmigungspegel 108,1 dB(A)	(95%)	108,1	Nein
14	447.591	5.788.292	43,8	NORDEX N149/4.0	Ja	NORDEX	N149/4.0-4.5-4.500	4.500	149,0	164,0	USER	Genehmigungspegel 108,1 dB(A)	(95%)	108,1	Nein
15	448.184	5.788.243	42,7	NORDEX N149/4.0	Ja	NORDEX	N149/4.0-4.5-4.500	4.500	149,0	164,0	USER	Genehmigungspegel 108,1 dB(A)	(95%)	108,1	Nein
16	447.255	5.785.494	65,0	ENERCON E-66/15	Nein	ENERCON	E-66/15.66-1.500	1.500	66,0	67,0	USER	Genehmigungspegel 102,0 dB(A) + 2,68 dB(A) SZ	(95%)	104,7	Nein
17	447.526	5.785.397	64,7	ENERCON E-66/15	Nein	ENERCON	E-66/15.66-1.500	1.500	66,0	67,0	USER	Genehmigungspegel 102,0 dB(A) + 2,68 dB(A) SZ	(95%)	104,7	Nein
25	446.585	5.783.913	56,8	VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
26	446.865	5.783.698	55,7	VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
27	446.376	5.783.686	57,7	VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	Nein
28	446.207	5.783.500	58,0	VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
29	446.580	5.783.490	60,0	VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	Nein
30	447.030	5.783.384	55,0	VESTAS V80-2.0M	. Ja	VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	Nein
31				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
32				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER	RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ	(95%)	103,2	
33				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
34				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
35				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
36				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
37				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
38				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
39				VESTAS V80-2.0M		VESTAS	V80-2.0MW-2.000	2.000	80,0	100,0	USER		(95%)	103,2	
40				REpower MD 70 15.		REpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
41				REpower MD 70 15.			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
42				REpower MD 70 15.			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
43				REpower MD 70 15.			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
44				REpower MD 70 15.			MD 70-1.500	1.500	70,0	85,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
45				REpower MD 70 15.			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
46				REpower MD 77 15.			MD 77-1.500	1.500	77,0	85,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
47				REpower MD 77 15.			MD 77-1.500	1.500	77,0	85,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
48				REpower MD 70 15.			MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
49				REpower MD 70 15.		REpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
50				REpower MD 70 15.		REpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
51				REpower MD 70 15.		REpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
52				REpower MD 70 15.		REpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
53				REpower MD 70 15.		REpower	MD 70-1.500	1.500	70,0	65,0	USER	Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ	(95%)	106,7	
WEC 01				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	
WEC 02				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode Os - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	
WEC 03				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode Os - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	
WEC 04 WEC 05				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB	(95%)	108,9	
				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER		(95%)	106,6	
WEC 06				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500 5.500	160,0	166,6	USER		(95%)	108,9	
WEC 07				ENERCON E-160 E			E-160 EP5 E2-5.500		160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%)	106,6	
WEC 10				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 102,0dB - Lwa: 102,0 dB(A) + 2,1 dB(A) OVB	(95%)	104,1	
WEC 10				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%)	106,6	
WEC 11 WEC 12				ENERCON E-160 E			E-160 EP5 E2-5.500	5.500 5.500	160,0 160.0	166,6 166,6	USER USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB	(95%) (95%)	106,6	
				ENERCON E-160 E ENERCON E-160 E			E-160 EP5 E2-5.500 E-160 EP5 E2-5.500	5.500	160,0	166.6	USER		(95%) (95%)	100,1 108,1	
WEC 13	440.747	J.103.133	JU,U	LINERCOIN E-100 E	. Ja	LINERCOIN	L-100 EF3 EZ-3.300	5.500	100,0	100,0	USER	Wode 100,000 - LWa. 100,0 ub(A) + 2,1 ub(A) UVB	(30.40)	100,1	Menn

Berechnungsergebnisse

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

Jonas Feja / jonas.feja@ramboll.com

RAMBOLL

05.06.2020 09:28/3.3.289

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung WEA

Beurteilungspegel Schall-Immissio

all-Immissionsort					Anforderung	Beurteilungspegel
Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA
			[m]	[m]	[dB(A)]	[dB(A)]
Beeskow, Radinkendorf Ausbau 2	449.625	5.785.955	42,5	5,0	45,0	40,9
Beeskow, Radinkendorf 33	449.911	5.784.952	42,5	5,0	45,0	40,6
Beeskow, Radinkendorf 36	449.916	5.784.646	42,5	5,0	40,0	40,6
Beeskow, Radinkendorfer Straße 37	449.338	5.782.577	43,5	5,0	45,0	38,3
Beeskow, Waldweg 2a	449.396	5.782.461	43,0	5,0	40,0	37,5
Beeskow, Schützenstraße 28	448.137	5.780.307	42,5	5,0	35,0	33,1
Reitz-Neuendorf, Schrödershof 2	447.397	5.787.167	57,2	5,0	45,0	41,6
Reitz-Neuendorf, Feldweg 2	446.025	5.785.719	65,0	5,0	43,0	40,3
Rietz-Neuendorf, Beeskower Chaussee 1	446.730	5.784.909	57,5	5,0	45,0	44,8
Rietz-Neuendorf, Kreuzberge 2	447.399	5.783.930	54,5	5,0	45,0	46,5
		Name Ost Beeskow, Radinkendorf Ausbau 2 Beeskow, Radinkendorf 33 Beeskow, Radinkendorf 36 Beeskow, Radinkendorf 36 Beeskow, Radinkendorfer Straße 37 Beeskow, Waldweg 2a Beeskow, Schützenstraße 28 Reitz-Neuendorf, Schrödershof 2 Reitz-Neuendorf, Feldweg 2 Rietz-Neuendorf, Beeskower Chaussee 1 446.730	Name Ost Nord Beeskow, Radinkendorf Ausbau 2 449.625 5.785.955 Beeskow, Radinkendorf 33 449.911 5.784.952 Beeskow, Radinkendorf 36 449.916 5.784.646 Beeskow, Radinkendorfer Straße 37 449.338 5.782.577 Beeskow, Waldweg 2a 449.396 5.782.461 Beeskow, Schützenstraße 28 448.137 5.780.307 Reitz-Neuendorf, Schrödershof 2 447.397 5.787.167 Reitz-Neuendorf, Feldweg 2 446.025 5.785.719 Rietz-Neuendorf, Beeskower Chaussee 1 446.730 5.784.909	Name Ost Nord Z [m] Beeskow, Radinkendorf Ausbau 2 449.625 5.785.955 42,5 Beeskow, Radinkendorf 33 449.911 5.784.952 42,5 Beeskow, Radinkendorf 36 449.916 5.784.646 42,5 Beeskow, Radinkendorfer Straße 37 449.336 5.782.577 43,5 Beeskow, Waldweg 2a 449.396 5.782.461 43,0 Beeskow, Schützenstraße 28 448.137 5.780.307 42,5 Reitz-Neuendorf, Schrödershof 2 447.397 5.787.167 57,2 Reitz-Neuendorf, Feldweg 2 446.025 5.785.719 65,0 Rietz-Neuendorf, Beeskower Chaussee 1 446.730 5.784.909 57,5	Name Ost Nord Z (m) Aufpunkthöhe (m) Beeskow, Radinkendorf Ausbau 2 449.625 5.785.955 42,5 5,0 Beeskow, Radinkendorf 33 449.911 5.784.952 42,5 5,0 Beeskow, Radinkendorf 36 449.916 5.784.646 42,5 5,0 Beeskow, Radinkendorfer Straße 37 449.338 5.782.577 43,5 5,0 Beeskow, Waldweg 2a 449.396 5.782.461 43,0 5,0 Beeskow, Schützenstraße 28 448.137 5.780.307 42,5 5,0 Reitz-Neuendorf, Schrödershof 2 447.397 5.787.167 57,2 5,0 Reitz-Neuendorf, Feldweg 2 446.025 5.785.719 65,0 5,0 Rietz-Neuendorf, Beeskower Chaussee 1 446.730 5.784.909 57,5 5,0	Name Ost Nord Z Aufpunkthöhe [m] Schall [dB(A)] Beeskow, Radinkendorf Ausbau 2 449.625 5.785.955 42,5 5,0 45,0 Beeskow, Radinkendorf 33 449.911 5.784.952 42,5 5,0 45,0 Beeskow, Radinkendorf 36 449.916 5.784.646 42,5 5,0 40,0 Beeskow, Radinkendorfer Straße 37 449.338 5.782.577 43,5 5,0 45,0 Beeskow, Waldweg 2a 449.396 5.782.461 43,0 5,0 40,0 Beeskow, Schützenstraße 28 448.137 5.780.307 42,5 5,0 35,0 Reitz-Neuendorf, Schrödershof 2 447.397 5.787.167 57,2 5,0 45,0 Reitz-Neuendorf, Feldweg 2 446.025 5.785.719 65,0 5,0 43,0 Rietz-Neuendorf, Beeskower Chaussee 1 446.730 5.784.909 57,5 5,0 45,0

Abstände (m)

Abstande (m)												
WEA	B01	B02	B03	B04	B05	B06	R01	R02	R03	R04		
13	3259	4278	4556	6341	6468	8468	1712	3631	4064	4879		
14	3099	4067	4325	5976	6105	8005	1142	3012	3491	4367		
15	2705	3717	3993	5783	5908	7937	1333	3321	3637	4384		
16	2415	2711	2794	3585	3713	5262	1679	1250	786	1571		
17	2172	2427	2506	3352	3482	5127	1774	1534	933	1473		
25	3663	3485	3411	3060	3165	3927	3353	1891	1006	814		
26	3566	3295	3195	2715	2818	3623	3509	2188	1218	582		
27	3963	3755	3668	3163	3260	3811	3627	2063	1273	1052		
					3355				1503			
28	4209	3979	3882	3264		3732	3855	2226		1267		
29	3918	3638	3531	2905	2999	3544	3766	2297	1427	930		
30	3653	3281	3150	2445	2541	3271	3800	2542	1554	659		
31	4471	4222	4117	3395	3478	3671	4097	2412	1751	1510		
32	4143	3808	3682	2878	2962	3313	4058	2566	1717	1134		
33	4729	4469	4358	3555	3632	3653	4324	2590	1988	1760		
34	3842	3419	3271	2390	2476	3044	4049	2766	1795	882		
35	4505	4169	4038	3134	3209	3293	4334	2735	1980	1497		
36	4870	4560	4433	3500	3570	3441	4559	2846	2213	1872		
37	4209	3766	3607	2561	2634	2873	4365	2975	2065	1244		
38	4811	4428	4281	3211	3274	3089	4690	3069	2336	1802		
39	5022	4664	4523	3463	3525	3233	4799	3108	2448	2013		
40	6004	6131	6122	5873	5967	6050	4469	2532	2960	3651		
41	6584	6712	6701	6396	6486	6423	4991	3086	3543	4211		
42	6379	6472	6451	6095	6184	6105	4885	2941	3319	3934		
43	6978	7077	7056	6659	6745	6537	5416	3504	3922	4531		
44	6499	6539	6502	6032	6116	5910	5111	3141	3423	3943		
45	6870	6923	6888	6410	6492	6218	5419	3469	3797	4331		
46	7204	7230	7186	6627	6705	6301	5787	3832	4127	4609		
47	6826	6814	6760	6157	6234	5843	5527	3545	3749	4168		
48	8594	8284	8140	6840	6868	5439	7870	5896	5715	5607		
49	8460	8110	7956	6589	6612	5111	7843	5887	5639	5458		
50	8371	7973	7805	6352	6368	4761	7884	5956	5632	5362		
51	8186	7744	7565	6039	6050	4365	7825	5932	5534	5180		
52	8774	8381	8214	6753	6768	5111	8248	6306	6013	5765		
53	8511	8055	7872	6308	6314	4543	8164	6269	5872	5507		
WEC 01	1897	2235	2344	3388	3519	5285	1630	1746	1234	1690		
WEC 01	1455					5350				1903		
		1849	1990	3282	3411		1712	2177	1650			
WEC 03	1193	1464	1601	2994	3122	5172	2052	2527	1892	1911		
WEC 04	1631	1803	1888	2959	3089	4976	2025	2158	1458	1542		
WEC 05	2088	2183	2226	2969	3099	4786	2119	1824	1015	1193		
WEC 06	1392	1392	1461	2650	2779	4809	2356	2577	1807	1625		
WEC 07	1873	1810	1826	2599	2729	4558	2409	2247	1374	1170		
WEC 09	2082	1723	1646	2059	2189	4050	2954	2650	1662	992		
WEC 10	1772	1226	1118	1864	1992	4123	3143	3114	2170	1500		
WEC 11	2185	1638	1497	1685	1815	3775	3310	3011	1997	1147		
WEC 12	2648	2099	1937	1593	1717	3405	3553	2974	1911	849		
WEC 13	2389	1686	1483	1298	1428	3480	3690	3369	2335	1362		

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg

05.06.2020 09:28/3.3.289

+49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com RAMBOLL

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schallleistungspegel der WEA LWA,ref:

Einzeltöne K:

Richtwirkungskorrektur Dc:

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Dämpfung aufgrund von Luftabsorption Aatm: Dämpfung aufgrund des Bodeneffekts Agr: Dämpfung aufgrund von Abschirmung Abar:

Dämpfung aufgrund verschiedener anderer Effekte Amisc:

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: B01 Beeskow, Radinkendorf Ausbau 2

Lautester Wert bis 95% Nennleistung WEA

Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
13	3.259	3.263	23,14	108,1	0,00	81,27	6,68	-3,00	0,00	0,00	84,95
14	3.099	3.103	23,79	108,1	0,00	80,84	6,46	-3,00	0,00	0,00	84,30
15	2.705	2.709	25,52	108,1	0,00	79,66	5,91	-3,00	0,00	0,00	82,57
16	2.415	2.417	24,19	104,7	0,00	78,66	4,89	-3,00	0,00	0,00	80,55
17	2.172	2.174	25,46	104,7	0,00	77,75	4,54	-3,00	0,00	0,00	79,28
25	3.663	3.664	17,38	103,2	0,00	82,28	6,51	-3,00	0,00	0,00	85,79
26	3.566	3.567	17,73	103,2	0,00	82,05	6,39	-3,00	0,00	0,00	85,44
27	3.963	3.965	16,35	103,2	0,00	82,96	6,86	-3,00	0,00	0,00	86,82
28	4.209	4.210	15,55	103,2		83,49	7,13	-3,00	0,00	0,00	87,62
29	3.918	3.920	16,50	103,2	0,00	82,86	6,81	-3,00	0,00	0,00	86,67
30	3.653	3.655	17,42	103,2	0,00	82,26	6,50	-3,00	0,00	0,00	85,75
31	4.471	4.472	14,74	103,2	0,00	84,01	7,42	-3,00	0,00	0,00	88,43
32	4.143	4.144	15,76	103,2	0,00	83,35	7,06	-3,00	0,00	0,00	87,41
33	4.729	4.730	13,98	103,2	0,00	84,50	7,69	-3,00	0,00	0,00	89,19
34	3.842	3.843	16,76	103,2	0,00	82,69	6,72	-3,00	0,00	0,00	86,41
35	4.505	4.506	14,64	103,2	0,00	84,08	7,45	-3,00	0,00	0,00	88,53
36	4.870	4.871	13,58	103,2	0,00	84,75	7,84	-3,00	0,00	0,00	89,59
37	4.209	4.210	15,55	103,2	0,00	83,49	7,13	-3,00	0,00	0,00	87,62
38	4.811	4.812	13,75	103,2	0,00	84,65		-3,00		0,00	89,42
39	5.022	5.023	13,16	103,2	0,00	85,02	7,99	-3,00	0,00	0,00	90,01
40	6.004	6.004	13,02	106,7	0,00	86,57	10,09	-3,00	0,00	0,00	93,66
41	6.584	6.585	11,77	106,7	0,00	87,37	10,53	-3,00	0,00	0,00	94,91
42	6.379	6.380	12,20	106,7	0,00	87,10	10,38	-3,00	0,00	0,00	94,48
43	6.978	6.979	10,99	106,7	0,00	87,88	10,82	-3,00	0,00	0,00	95,69
44	6.499	6.500	11,95	106,7	0,00	87,26	10,47	-3,00	0,00	0,00	94,73
45	6.870	6.871	11,20	106,7	0,00	87,74	10,74	-3,00	0,00	0,00	95,48
46	7.204	7.205	13,52	106,7	0,00	88,15	8,00	-3,00	0,00	0,00	93,15
47	6.826	6.827	14,23	106,7	0,00	87,68	7,76	-3,00	0,00	0,00	92,45
48	8.594	8.594	8,13	106,7	0,00	89,68	11,86	-3,00	0,00	0,00	98,54
49	8.460	8.460	8,35	106,7	0,00	89,55	11,78	-3,00	0,00	0,00	98,33
50	8.371	8.372	8,50	106,7	0,00	89,46	11,73	-3,00	0,00	0,00	98,18
51	8.186	8.187	8,80	106,7	0,00	89,26	11,61	-3,00	0,00	0,00	97,88
52	8.774	8.774	7,85	106,7	0,00	89,86	11,97	-3,00	0,00	0,00	98,83
53	8.511	8.511	8,27	106,7	0,00	89,60	11,81	-3,00	0,00	0,00	98,41
WEC 01	1.897	1.905	28,67	108,9	0,00	76,60	6,66	-3,00	0,00	0,00	80,26
WEC 02	1.455	1.465	31,93	108,9	0,00	74,32	5,67	-3,00	0,00	0,00	76,99
WEC 03	1.193	1.205	34,30	108,9	0,00	72,62	5,00	-3,00	0,00	0,00	74,62
WEC 04	1.631	1.640	30,54	108,9	0,00	75,30	6,08	-3,00	0,00	0,00	78,38
WEC 05	2.088	2.095	25,38	106,6	0,00	77,42	6,78	-3,00	0,00	0,00	81,21
WEC 06	1.392	1.402	32,47	108,9	0,00	73,94	5,52	-3,00	0,00	0,00	76,46
WEC 07	1.873	1.880	26,75	106,6	0,00	76,48	6,36	-3,00	0,00	0,00	79,84
WEC 09	2.082	2.089	23,20	104,1	0,00	77,40	6,46	-3,00	0,00	0,00	80,86
WEC 10	1.772	1.780	27,43	106,6		76,01	6,15	-3,00	0,00	0,00	79,16
WEC 11	2.185	2.191	24,81	106,6	0,00	77,81	6,96	-3,00	0,00	0,00	81,78
(Fortoota)	امطمقم مما	to Coito)									

windPRO 05.06.2020 09:31 / 1

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:28/3.3.289

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite)

WEA

Nr. Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] WEC 12 83,33 2.648 2.654 16,75 100,1 0,00 79,48 6,86 -3,00 0,00 0,00 25,09 2.389 2.395 108,1 0,00 78,59 0,00 WEC 13 7,46 -3,00 0,00 83,05 Summe 40,90

Schall-Immissionsort: B02 Beeskow, Radinkendorf 33

Lautester Wert bis 95% Nennleistung

WEA Nr.

Nr. Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc A Att Amisc Amisc A Amisc Am	VVEA											
13 4.278 4.281 19,56 108,1 0,00 83,63 7,91 3,00 0,00 0,00 87,86 15 3.717 3.720 21,43 108,1 0,00 82,41 7,26 -3,00 0,00 0,00 86,67 16 2.711 2.713 22,77 104,7 0,00 79,67 5,30 3,00 0,00 0,00 86,67 17 2.427 2.428 24,13 104,7 0,00 78,71 4,91 3,00 0,00 0,00 80,61 26 3.295 3.296 18,75 103,2 0,00 81,36 6,06 -3,00 0,00 0,00 86,11 28 3.999 3.981 16,30 103,2 0,00 81,36 6,05 -3,00 0,00 0,00 86,57 30 3.281 3.282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 0,00 86,30 31	Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	
14 4,067 4,070 20,23 108,1 0,00 82,41 7,67 3,00 0,00 0,00 8,66 16 2,711 2,713 22,77 104,7 0,00 79,67 5,30 3,00 0,00 0,00 81,67 17 2,427 2,428 24,13 104,7 0,00 79,67 5,30 3,00 0,00 80,61 25 3,485 3,487 18,03 103,2 0,00 81,35 6,06 -3,00 0,00 0,00 84,42 27 3,555 3,757 17,06 103,2 0,00 81,35 6,62 3,00 0,00 0,00 86,87 29 3,638 3,640 17,47 103,2 0,00 81,32 6,62 3,00 0,00 0,00 86,87 30 3,281 3,282 18,80 103,2 0,00 81,51 7,15 3,00 0,00 0,00 86,30 31 4,222		[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
15 3,717 3,720 21,43 108,1 0,00 82,41 7,26 3,00 0,00 0,00 86,67 16 2,711 2,713 22,77 104,7 0,00 79,67 5,30 3,00 0,00 0,00 80,61 25 3,485 3,487 18,03 103,2 0,00 81,36 6,00 -3,00 0,00 0,00 86,41 26 3,295 3,296 18,75 103,2 0,00 82,50 6,62 3,00 0,00 0,00 86,11 28 3,979 3,981 16,30 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 86,11 30 3,281 3,282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 0,00 86,30 31 4,222 4,224 15,51 103,2 0,00 82,62 6,68 -3,00 0,00 0,00 86,30 33	13	4.278	4.281	19,56	108,1	0,00	83,63	7,91	-3,00	0,00	0,00	88,54
16 2,711 2,713 22,77 104,7 0,00 79,67 5,30 3,00 0,00 0,00 81,97 25 3,485 3,487 18,03 103,2 0,00 81,85 6,30 3,00 0,00 0,00 85,14 26 3,295 3,296 18,75 103,2 0,00 82,50 6,62 3,00 0,00 0,00 86,11 28 3,979 3,981 16,30 103,2 0,00 82,50 6,62 3,00 0,00 86,81 39 3,638 3,640 17,47 103,2 0,00 82,50 6,68 3,00 0,00 86,87 31 4,222 4,224 15,51 103,2 0,00 81,32 6,05 3,00 0,00 0,00 84,37 31 4,222 4,224 15,51 103,2 0,00 81,68 6,22 3,00 0,00 0,00 84,39 32 3,808 3,810	14	4.067	4.070	20,23	108,1	0,00	83,19	7,67	-3,00	0,00	0,00	87,86
17 2.427 2.428 24,13 104,7 0,00 78,71 4,91 -3,00 0,00 0,00 80,61 26 3.295 3.296 18,75 103,2 0,00 81,36 6,06 -3,00 0,00 0,00 84,42 27 3.755 3.757 17,06 103,2 0,00 82,50 6,62 -3,00 0,00 0,00 86,81 29 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 86,87 30 3.281 3.282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 0,00 84,37 31 4.222 4.224 15,51 103,2 0,00 81,61 7,15 -3,00 0,00 0,00 84,63 34 3.419 3.421 18,27 103,2 0,00 81,61 42 -3,00 0,00 0,00 84,90 35	15	3.717	3.720	21,43	108,1	0,00	82,41	7,26	-3,00	0,00	0,00	86,67
17 2.427 2.428 24,13 104,7 0,00 78,71 4,91 -3,00 0,00 0,00 80,61 26 3.295 3.296 18,75 103,2 0,00 81,36 6,06 -3,00 0,00 0,00 84,42 27 3.755 3.757 17,06 103,2 0,00 82,50 6,62 -3,00 0,00 0,00 86,81 29 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 86,87 30 3.281 3.282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 0,00 84,37 31 4.222 4.224 15,51 103,2 0,00 81,61 7,15 -3,00 0,00 0,00 84,63 34 3.419 3.421 18,27 103,2 0,00 81,61 42 -3,00 0,00 0,00 84,90 35	16	2.711	2.713	22.77	104.7	0.00	79.67	5,30	-3.00	0.00	0.00	81.97
25 3.485 3.487 18,03 103,2 0,00 81,85 6,30 -3,00 0,00 0,00 84,12 26 3.295 3.296 18,75 103,2 0,00 81,35 6,06 -3,00 0,00 0,00 84,42 27 3.755 3.757 17,06 103,2 0,00 82,50 6,62 -3,00 0,00 0,00 86,87 29 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 85,70 30 3.281 3.282 18.80 103,2 0,00 83,51 7,15 -3,00 0,00 0,00 86,30 31 4.222 4.224 15,51 103,2 0,00 82,62 6,68 -3,00 0,00 0,00 86,30 33 4,469 4,470 14,75 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 86,36 36												
26 3.295 3.296 18,75 103,2 0,00 81,36 6,06 -3,00 0,00 0,00 84,42 27 3.755 3.757 17,06 103,2 0,00 82,00 0,00 0,00 0,00 86,11 28 3.979 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 85,70 30 3.281 3.282 18,80 103,2 0,00 81,25 6,05 -3,00 0,00 0,00 84,37 31 4.222 4.224 15,51 103,2 0,00 83,51 7,15 -3,00 0,00 0,00 84,37 33 4.469 4.470 14,75 103,2 0,00 84,01 7,42 -3,00 0,00 0,00 88,42 34 4.169 4.171 15,68 103,2 0,00 84,01 7,09 -3,00 0,00 0,00 88,42 36												
27 3.755 3.757 17,06 103,2 0,00 82,00 6,62 -3,00 0,00 0,00 86,11 29 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 85,70 30 3.281 3.282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 0,00 84,37 31 4.222 4.224 15,51 103,2 0,00 82,62 6,68 -3,00 0,00 0,00 86,30 33 4.469 4.470 14,75 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 86,63 34 3.419 3.421 18,27 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 88,42 34 4.169 4.171 15,68 103,2 0,00 84,18 7,51 -3,00 0,00 0,00 88,69 37												
28 3.979 3.981 16,30 103,2 0,00 82,02 6,88 -3,00 0,00 0,00 86,87 29 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 85,73 31 4.222 4.224 15,51 103,2 0,00 81,32 6,06 3,00 0,00 0,00 84,37 31 4.222 4.224 15,51 103,2 0,00 84,01 7,15 -3,00 0,00 0,00 86,30 33 4.469 4.470 14,75 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 84,90 34 3.419 3.421 18,27 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 84,90 36 4.560 4.561 14,48 103,2 0,00 84,18 7,57 -3,00 0,00 0,00 86,15 38												
29 3.638 3.640 17,47 103,2 0,00 82,22 6,48 -3,00 0,00 0,00 87,70 30 3.281 3.282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 80,00 87,66 31 4.222 4.224 15,51 103,2 0,00 82,62 6,68 -3,00 0,00 0,00 84,63 33 4.469 4.470 14,75 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 84,61 34 3.419 3.421 18,27 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 84,83 34 4.169 4.171 15,68 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 87,49 36 4.561 4.488 103,2 0,00 84,38 7,62 -3,00 0,00 0,00 88,69 37 3.766 <td></td>												
30 3.281 3.282 18,80 103,2 0,00 81,32 6,05 -3,00 0,00 0,00 87,66 32 3.808 3.810 16,87 103,2 0,00 82,62 6,68 -3,00 0,00 0,00 80,63 33 4.469 4.470 14,75 103,2 0,00 84,01 7,42 -3,00 0,00 80,03 34 19 3.421 18,27 103,2 0,00 84,01 7,09 -3,00 0,00 84,42 34 1.69 4.171 15,68 103,2 0,00 84,18 7,51 -3,00 0,00 87,49 36 4.560 4.561 14,48 103,2 0,00 84,38 7,51 -3,00 0,00 9,00 88,69 37 3.766 3.767 17,02 103,2 0,00 82,52 6,63 -3,00 0,00 0,00 88,69 38 4.28 4.29 14,87												
31 4.222 4.224 15,51 103,2 0,00 83,51 7,15 -3,00 0,00 0,00 86,36 32 3.808 3.810 16,87 103,2 0,00 84,61 7,42 -3,00 0,00 0,00 84,01 34 3.419 3.421 18,27 103,2 0,00 81,68 22 -3,00 0,00 0,00 84,90 35 4.169 4.171 15,68 103,2 0,00 81,48 7,51 -3,00 0,00 0,00 84,90 36 4.560 4.561 14,48 103,2 0,00 81,48 7,51 -3,00 0,00 0,00 86,15 38 4.428 4.429 14,87 103,2 0,00 84,38 7,62 -3,00 0,00 0,00 86,15 38 4.428 4.429 14,87 103,2 0,00 84,38 7,62 -3,00 0,00 0,00 89,00 40												
32 3.808 3.810 16,87 103,2 0,00 82,62 6,68 3,00 0,00 0,00 86,30 33 4,469 4.470 14,75 103,2 0,00 81,68 6,22 3,00 0,00 0,00 84,90 35 4.169 4.171 15,68 103,2 0,00 83,40 7,90 3,00 0,00 0,00 87,49 36 4.560 4.561 14,48 103,2 0,00 82,52 6,63 3,00 0,00 0,00 88,90 37 3.766 3.767 17,02 103,2 0,00 84,18 7,51 3,00 0,00 0,00 88,69 38 4.428 4.429 14,87 103,2 0,00 84,38 7,62 -3,00 0,00 0,00 89,00 40 6.131 6.132 12,74 106,7 0,00 86,75 10,19 3,00 0,00 0,00 99,01 41							,					
33 4.469 4.470 14,75 103,2 0,00 84,01 7,42 -3,00 0,00 0,00 88,42 34 3.419 3.421 18,27 103,2 0,00 81,68 6,22 -3,00 0,00 0,00 84,90 35 4.169 4.171 15,68 103,2 0,00 81,48 7,51 -3,00 0,00 0,00 84,18 36 4.560 4.561 14,48 103,2 0,00 82,52 6,63 -3,00 0,00 0,00 86,15 38 4.28 4.429 14,87 103,2 0,00 83,93 7,37 -3,00 0,00 0,00 88,30 39 4.664 4.666 14,17 103,2 0,00 87,55 10,19 -3,00 0,00 0,00 89,00 40 6.131 6.132 12,74 106,7 0,00 87,52 10,45 -3,00 0,00 0,00 94,67 43 <td></td>												
34 3.419 3.421 18,27 103,2 0,00 81,68 6,22 -3,00 0,00 84,90 35 4,169 4,171 15,68 103,2 0,00 83,40 7,09 -3,00 0,00 0,00 87,49 36 4,560 4,561 14,48 103,2 0,00 84,18 7,51 -3,00 0,00 0,00 86,69 37 3,766 3,767 17,02 103,2 0,00 83,93 7,37 -3,00 0,00 0,00 89,00 40 6,131 6,132 12,74 106,7 0,00 86,75 10,19 -3,00 0,00 89,00 41 6,712 6,713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 95,74 42 6,472 6,472 12,01 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 95,89 44 6,523 6,924												
35 4.169 4.171 15,68 103,2 0,00 83,40 7,09 -3,00 0,00 87,49 36 4.560 4.561 14,48 103,2 0,00 82,52 6,63 -3,00 0,00 0,00 88,69 37 3.766 3.767 17,02 103,2 0,00 82,52 6,63 -3,00 0,00 0,00 86,15 38 4.428 4.429 14,87 103,2 0,00 83,93 7,37 -3,00 0,00 88,00 40 6.131 6.132 12,74 106,7 0,00 87,51 10,63 -3,00 0,00 0,00 93,94 41 6.712 6.713 11,51 106,7 0,00 87,52 10,63 -3,00 0,00 9,00 94,67 43 7.077 7.078 10,79 106,7 0,00 88,00 10,89 -3,00 0,00 9,00 94,67 43 7.077 7.078												
36 4.560 4.561 14,48 103,2 0,00 84,18 7,51 -3,00 0,00 0,00 86,69 37 3,766 3,767 17,02 103,2 0,00 82,52 6,63 -3,00 0,00 0,00 86,15 38 4,428 4,429 14,87 103,2 0,00 84,38 7,37 -3,00 0,00 0,00 89,00 40 6,131 6,132 12,74 106,7 0,00 86,75 10,19 -3,00 0,00 93,94 41 6,712 6,713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 93,94 41 6,712 6,472 12,01 106,7 0,00 87,22 10,45 -3,00 0,00 90,00 94,67 43 7,077 7,078 10,79 106,7 0,00 87,31 10,50 -3,00 0,00 99,481 45 6,923 6,924 1												
37 3.766 3.767 17,02 103,2 0,00 82,52 6,63 -3,00 0,00 86,15 38 4.428 4.429 14,87 103,2 0,00 83,93 7,37 -3,00 0,00 0,00 89,00 40 6.131 6.132 12,74 106,7 0,00 86,75 10,19 -3,00 0,00 90,00 41 6.712 6.713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 95,17 42 6.472 6.472 12,01 106,7 0,00 87,22 10,45 -3,00 0,00 90,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,81 10,78 -3,00 0,00 90,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,81 10,78 -3,00 0,00 90,00 95,59 46 7.230	35	4.169										
38 4.428 4.429 14,87 103,2 0,00 83,93 7,37 -3,00 0,00 88,30 39 4.664 4.666 14,17 103,2 0,00 84,38 7,62 -3,00 0,00 0,00 89,00 40 6.131 6.132 12,74 106,7 0,00 86,75 10,19 -3,00 0,00 0,00 93,94 41 6.712 6.713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 94,67 43 7.077 7.078 10,79 106,7 0,00 87,21 10,50 -3,00 0,00 0,00 94,67 43 7.077 7.078 10,79 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,81 10,50 -3,00 0,00 0,00 99,20 46 7.23	36	4.560	4.561	14,48		0,00	84,18	7,51	-3,00	0,00	0,00	88,69
39 4.664 4.666 14,17 103,2 0,00 84,38 7,62 -3,00 0,00 0,00 93,94 40 6.131 6.132 12,74 106,7 0,00 86,75 10,19 -3,00 0,00 0,00 93,94 41 6.712 6.713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 94,67 43 7.077 7.078 10,79 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 89,18 8,01 -3,00 0,00 0,00 92,20 47<	37	3.766	3.767	17,02	103,2	0,00	82,52	6,63	-3,00	0,00	0,00	86,15
40 6.131 6.132 12,74 106,7 0,00 86,75 10,19 -3,00 0,00 93,94 41 6.712 6.713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 95,17 42 6.472 6.472 12,01 106,7 0,00 87,22 10,45 -3,00 0,00 94,67 43 7.077 7.078 10,79 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 94,81 44 6.539 6.540 11,87 106,7 0,00 87,81 10,78 -3,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,61 7,75 -3,00 0,00 90,93,20 47 6.814 6.815 14,25 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 97,75 50 7.973 7,973 9,17 <t< td=""><td>38</td><td>4.428</td><td>4.429</td><td>14,87</td><td>103,2</td><td>0,00</td><td>83,93</td><td>7,37</td><td>-3,00</td><td>0,00</td><td>0,00</td><td>88,30</td></t<>	38	4.428	4.429	14,87	103,2	0,00	83,93	7,37	-3,00	0,00	0,00	88,30
41 6.712 6.713 11,51 106,7 0,00 87,54 10,63 -3,00 0,00 0,00 95,17 42 6.472 6.472 12,01 106,7 0,00 87,22 10,45 -3,00 0,00 0,00 94,67 43 7.077 7.078 10,79 106,7 0,00 88,00 10,89 -3,00 0,00 0,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,81 10,50 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,81 10,50 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 93,20 47 6.814 6.815 14,25 106,7 0,00 87,87 11,67 -3,00 0,00 0,00 99,24 48 8.284 8,64 106,7 0,00 89,18 11,57 -3,00 <t< td=""><td>39</td><td>4.664</td><td>4.666</td><td>14,17</td><td>103,2</td><td>0,00</td><td>84,38</td><td>7,62</td><td>-3,00</td><td>0,00</td><td>0,00</td><td>89,00</td></t<>	39	4.664	4.666	14,17	103,2	0,00	84,38	7,62	-3,00	0,00	0,00	89,00
42 6.472 6.472 12,01 106,7 0,00 87,22 10,45 -3,00 0,00 94,67 43 7.077 7.078 10,79 106,7 0,00 88,00 10,89 -3,00 0,00 0,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 94,81 45 6.923 6.924 11,09 106,7 0,00 87,81 10,78 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 93,20 47 6.814 6.815 14,25 106,7 0,00 89,18 11,57 -3,00 0,00 0,00 92,42 48 8.284 8.284 8,64 106,7 0,00 89,18 11,57 -3,00 0,00 0,00 97,55 50 7.97	40	6.131	6.132	12,74	106,7	0,00	86,75	10,19	-3,00	0,00	0,00	93,94
43 7.077 7.078 10,79 106,7 0,00 88,00 10,89 -3,00 0,00 0,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 94,81 45 6.923 6.924 11,09 106,7 0,00 87,81 10,78 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 92,42 48 8.284 8.64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 92,42 48 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 97,75 50 7,973 7,973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7,744 7,744 </td <td>41</td> <td>6.712</td> <td>6.713</td> <td>11,51</td> <td>106,7</td> <td>0,00</td> <td>87,54</td> <td>10,63</td> <td>-3,00</td> <td>0,00</td> <td>0,00</td> <td>95,17</td>	41	6.712	6.713	11,51	106,7	0,00	87,54	10,63	-3,00	0,00	0,00	95,17
43 7.077 7.078 10,79 106,7 0,00 88,00 10,89 -3,00 0,00 0,00 95,89 44 6.539 6.540 11,87 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 94,81 45 6.923 6.924 11,09 106,7 0,00 87,81 10,78 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 92,42 48 8.284 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 92,42 49 8.110 8.111 8,93 106,7 0,00 89,37 11,67 -3,00 0,00 97,51 50 7,973 7,973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7,744<	42	6.472	6.472	12,01	106,7	0,00	87,22	10,45	-3,00	0,00	0,00	94,67
444 6.539 6.540 11,87 106,7 0,00 87,31 10,50 -3,00 0,00 0,00 94,81 45 6.923 6.924 11,09 106,7 0,00 87,81 10,78 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 88,18 8,01 -3,00 0,00 0,00 93,20 47 6.814 6.815 14,25 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 92,42 48 8.284 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 97,75 50 7.973 7,973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7,744 7,744 9,56 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 52 8.381 8,381 8,48 106,7 0,00 89,12 11,53 -	43	7.077	7.078	10.79	106.7						0.00	95.89
45 6.923 6.924 11,09 106,7 0,00 87,81 10,78 -3,00 0,00 0,00 95,59 46 7.230 7.231 13,48 106,7 0,00 88,18 8,01 -3,00 0,00 0,00 93,20 47 6.814 6.815 14,25 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 92,42 48 8.284 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 97,75 50 7.973 7.973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,55 51 7.744 7.744 9,56 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 52 8.381 8,381 8,48 106,7 0,00 89,73 11,73 -3,00 0,00 0,00 97,65 WEC 01 2.235 2.242 26,59 106,7 0,00 89,12 11,53 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
46 7.230 7.231 13,48 106,7 0,00 88,18 8,01 -3,00 0,00 0,00 93,20 47 6.814 6.815 14,25 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 92,42 48 8.284 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 98,04 49 8.110 8.111 8,93 106,7 0,00 89,18 11,57 -3,00 0,00 0,00 97,75 50 7,973 7,973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7,744 7,744 9,56 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 52 8.381 8,48 106,7 0,00 89,47 11,73 -3,00 0,00 0,00 97,65 WEC 01 2,235<												
47 6.814 6.815 14,25 106,7 0,00 87,67 7,75 -3,00 0,00 0,00 92,42 48 8.284 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 98,04 49 8.110 8.111 8,93 106,7 0,00 89,18 11,57 -3,00 0,00 0,00 97,75 50 7,973 7,973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7,744 7,744 9,56 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 52 8.381 8,48 106,7 0,00 89,47 11,73 -3,00 0,00 0,00 97,65 WEC 01 2,235 2,242 26,59 108,9 0,00 76,38 6,56 -3,00 0,00 0,00 79,94 WEC 02 1.												
48 8.284 8.284 8,64 106,7 0,00 89,37 11,67 -3,00 0,00 0,00 98,04 49 8.110 8.111 8,93 106,7 0,00 89,18 11,57 -3,00 0,00 0,00 97,75 50 7,973 7,973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7,744 7,744 9,56 106,7 0,00 89,47 11,33 -3,00 0,00 0,00 97,51 52 8,381 8,381 8,48 106,7 0,00 89,47 11,53 -3,00 0,00 0,00 97,65 WEC 01 2,235 2,242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 29,765 WEC 02 1,849 1,857 28,99 108,9 0,00 76,38 6,56 -3,00 0,00 0,00 79,94 WEC 03 1,464 1,474 31,85 108,9 0,00 76,16 6,46												
49 8.110 8.111 8,93 106,7 0,00 89,18 11,57 -3,00 0,00 0,00 97,75 50 7.973 7.973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7.744 7.744 9,56 106,7 0,00 88,78 11,33 -3,00 0,00 0,00 97,11 52 8.381 8.381 8,48 106,7 0,00 89,47 11,73 -3,00 0,00 0,00 98,20 53 8.055 8.056 9,02 106,7 0,00 89,12 11,53 -3,00 0,00 0,00 97,65 WEC 01 2.235 2.242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 97,94 WEC 03 1.464 1.474 31,85 108,9 0,00 74,37 5,70 -3,00 0,00 0,00 77,07 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
50 7.973 7.973 9,17 106,7 0,00 89,03 11,48 -3,00 0,00 0,00 97,51 51 7.744 7.744 9,56 106,7 0,00 88,78 11,33 -3,00 0,00 0,00 97,11 52 8.381 8.381 8,48 106,7 0,00 89,47 11,73 -3,00 0,00 0,00 98,20 53 8.055 8.056 9,02 106,7 0,00 89,12 11,53 -3,00 0,00 0,00 97,65 WEC 01 2.235 2.242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 97,94 WEC 02 1.849 1.857 28,99 108,9 0,00 76,38 6,56 -3,00 0,00 79,94 WEC 03 1.464 1.474 31,85 108,9 0,00 76,16 6,46 -3,00 0,00 77,07 WEC 05 2.183							,					
51 7.744 7.744 9,56 106,7 0,00 88,78 11,33 -3,00 0,00 97,11 52 8.381 8.381 8,48 106,7 0,00 89,47 11,73 -3,00 0,00 0,00 98,20 53 8.055 8.056 9,02 106,7 0,00 89,12 11,53 -3,00 0,00 0,00 97,65 WEC 01 2.235 2.242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 79,94 WEC 03 1.849 1.857 28,99 108,9 0,00 76,38 6,56 -3,00 0,00 79,94 WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 70,00 77,07 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 70,04 WEC 05 1.810 1.818 <td></td>												
52 8.381 8.381 8,48 106,7 0,00 89,47 11,73 -3,00 0,00 0,00 98,20 53 8.055 8.056 9,02 106,7 0,00 89,12 11,53 -3,00 0,00 0,00 97,65 WEC 01 2.235 2.242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 79,94 WEC 03 1.464 1.474 31,85 108,9 0,00 76,16 6,46 -3,00 0,00 0,00 77,07 WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 0,00 77,07 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 79,42 WEC 06 1.392 1.403 32,46 108,9 0,00 73,44 5,22 -3,00 0,00 0,00 79,42 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19												
53 8.055 8.056 9,02 106,7 0,00 89,12 11,53 -3,00 0,00 0,00 97,65 WEC 01 2.235 2.242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 82,33 WEC 02 1.849 1.857 28,99 108,9 0,00 76,38 6,56 -3,00 0,00 0,00 79,94 WEC 03 1.464 1.474 31,85 108,9 0,00 76,16 6,46 -3,00 0,00 70,00 77,07 WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 70,00 79,62 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,22 -3,00 0,00 70,00 79,42												
WEC 01 2.235 2.242 26,59 108,9 0,00 78,01 7,32 -3,00 0,00 0,00 82,33 WEC 02 1.849 1.857 28,99 108,9 0,00 76,38 6,56 -3,00 0,00 0,00 79,94 WEC 03 1.464 1.474 31,85 108,9 0,00 74,37 5,70 -3,00 0,00 0,00 77,07 WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 0,00 79,62 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 70,00 76,46 WEC 09 1.723 1.731 25,53 104,1 0,00 75,76 -3,00 0,00 0,00 78,53												
WEC 02 1.849 1.857 28,99 108,9 0,00 76,38 6,56 -3,00 0,00 79,94 WEC 03 1.464 1.474 31,85 108,9 0,00 74,37 5,70 -3,00 0,00 70,00 77,07 WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 0,00 79,62 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 76,46 WEC 06 1.392 1.403 32,46 108,9 0,00 73,94 5,52 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 79,42 WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 0,00 78,53 WEC 11 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
WEC 03 1.464 1.474 31,85 108,9 0,00 74,37 5,70 -3,00 0,00 77,07 WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 0,00 79,62 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 81,77 WEC 06 1.392 1.403 32,46 108,9 0,00 73,94 5,52 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 79,42 WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 70,00 78,53 WEC 10 1.226 1.237 31,86 106,6 0,00 75,33 5,86 -3,00 0,00 70,00 74,73 WEC 12 <												
WEC 04 1.803 1.811 29,30 108,9 0,00 76,16 6,46 -3,00 0,00 0,00 79,62 WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 81,77 WEC 06 1.392 1.403 32,46 108,9 0,00 73,94 5,52 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 0,00 79,42 WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 70,00 78,53 WEC 10 1.226 1.237 31,86 106,6 0,00 72,85 4,88 -3,00 0,00 70,00 78,73 WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 <td></td>												
WEC 05 2.183 2.190 24,82 106,6 0,00 77,81 6,96 -3,00 0,00 0,00 81,77 WEC 06 1.392 1.403 32,46 108,9 0,00 73,94 5,52 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 0,00 79,42 WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 0,00 78,53 WEC 10 1.226 1.237 31,86 106,6 0,00 72,85 4,88 -3,00 0,00 0,00 74,73 WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58						. ,						
WEC 06 1.392 1.403 32,46 108,9 0,00 73,94 5,52 -3,00 0,00 0,00 76,46 WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 0,00 79,42 WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 0,00 78,53 WEC 10 1.226 1.237 31,86 106,6 0,00 72,85 4,88 -3,00 0,00 0,00 74,73 WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 78,66 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66												
WEC 07 1.810 1.818 27,17 106,6 0,00 76,19 6,23 -3,00 0,00 0,00 79,42 WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 0,00 78,53 WEC 10 1.226 1.237 31,86 106,6 0,00 72,85 4,88 -3,00 0,00 0,00 74,73 WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 78,66 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66	WEC 05	2.183	2.190	24,82	106,6	0,00	77,81	6,96	-3,00	0,00	0,00	81,77
WEC 09 1.723 1.731 25,53 104,1 0,00 75,77 5,76 -3,00 0,00 0,00 78,53 WEC 10 1.226 1.237 31,86 106,6 0,00 72,85 4,88 -3,00 0,00 0,00 74,73 WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 80,45 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66	WEC 06	1.392	1.403		108,9	0,00	73,94	5,52	-3,00	0,00	0,00	76,46
WEC 10 1.226 1.237 31,86 106,6 0,00 72,85 4,88 -3,00 0,00 0,00 74,73 WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 80,45 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66		1.810	1.818	27,17	106,6	0,00	76,19	6,23	-3,00	0,00	0,00	79,42
WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 80,45 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66	WEC 09	1.723	1.731	25,53	104,1	0,00	75,77	5,76	-3,00	0,00	0,00	78,53
WEC 11 1.638 1.646 28,40 106,6 0,00 75,33 5,86 -3,00 0,00 0,00 78,19 WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 80,45 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66	WEC 10	1.226	1.237	31,86	106,6	0,00	72,85	4,88	-3,00	0,00	0,00	74,73
WEC 12 2.099 2.105 19,63 100,1 0,00 77,47 5,98 -3,00 0,00 0,00 80,45 WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66	WEC 11	1.638	1.646	28,40	106,6	0,00	75,33	5,86	-3,00	0,00	0,00	78,19
WEC 13 1.686 1.694 29,48 108,1 0,00 75,58 6,08 -3,00 0,00 0,00 78,66	WEC 12											
	Summe			40,59	•		-	-	-		-	-

Schall-Immissionsort: B03 Beeskow, Radinkendorf 36

Lautester Wert bis 95% Nennleistung

WEA

Abstand Schallweg Berechnet LWA Nr. Dc Adiv Aatm Agr Abar Amisc Α [m] [m] [dB(A)] [dB(A)] [dB][dB] [dB] [dB] [dB] [dB] [dB] 13 4.556 4.558 18,71 108,1 0,00 84,18 8,21 -3,00 0,00 0,00 89,39 4.325 4.328 19,41 108,1 0,00 83,73 0,00 7,96 -3,00 0,00 88,68 14

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:28/3.3.289

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite)

WEA	3		,								
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
15	3.993	3.996	20,48	108,1	0,00	83,03	7,58	-3,00	0,00	0,00	87,62
16	2.794	2.795	22,40	104,7	0,00	79,93	5,41	-3,00	0,00	0,00	82,34
17	2.506	2.507	23,74	104,7	0,00	78,98	5,02	-3,00	0,00	0,00	81,00
25	3.411	3.413	18,30	103,2	0,00	81,66	6,21	-3,00	0,00	0,00	84,87
26	3.195	3.197	19,14	103,2	0,00	81,09	5,94	-3,00	0,00	0,00	84,03
27	3.668	3.670	17,36	103,2	0,00	82,29	6,52	-3,00	0,00	0,00	85,81
28	3.882	3.884	16,62	103,2	0,00	82,79	6,76	-3,00	0,00	0,00	86,55
29	3.531	3.533	17,86	103,2	0,00	81,96	6,35	-3,00	0,00	0,00	85,31
30	3.150	3.152	19,32	103,2	0,00	80,97	5,88	-3,00	0,00	0,00	83,85
31	4.117	4.119	15,85	103,2	0,00	83,29	7,03	-3,00	0,00	0,00	87,33
32	3.682	3.683	17,31	103,2	0,00	82,33	6,53	-3,00	0,00	0,00	85,86
33	4.358	4.359	15,09	103,2	0,00	83,79	7,30	-3,00	0,00	0,00	88,08
34	3.271	3.272	18,84	103,2	0,00	81,30	6,03	-3,00	0,00	0,00	84,33
35	4.038	4.040	16,10	103,2	0,00	83,13	6,94	-3,00	0,00	0,00	87,07
36	4.433	4.435	14,86	103,2	0,00	83,94	7,38	-3,00	0,00	0,00	88,31
37	3.607	3.609	17,58	103,2	0,00	82,15	6,44	-3,00	0,00	0,00	85,59
38	4.281	4.282	15,32	103,2	0,00	83,63	7,21	-3,00	0,00	0,00	87,85
39	4.523	4.524	14,59	103,2	0,00	84,11	7,47	-3,00	0,00	0,00	88,58
40	6.122	6.122	12,76	106,7	0,00	86,74	10,18	-3,00	0,00	0,00	93,92
41	6.701	6.701	11,54	106,7		87,52	10,62			0,00	95,14
42	6.451	6.451	12,05	106,7	0,00	87,19	10,44	-3,00	0,00	0,00	94,63
43	7.056	7.056	10,83	106,7	0,00	87,97	10,87	-3,00	0,00	0,00	95,84
44	6.502	6.503	11,94	106,7	0,00	87,26	10,47			0,00	94,74
45	6.888	6.889	11,16	106,7	0,00	87,76	10,75	-3,00	0,00	0,00	95,52
46	7.186	7.187	13,56	106,7	0,00	88,13		-3,00		0,00	93,12
47	6.760	6.761	14,36	106,7		87,60		-3,00		0,00	92,32
48	8.140	8.140	8,88	106,7		89,21		-3,00	0,00	0,00	97,80
49	7.956	7.957	9,19	106,7	0,00	89,01	11,47			0,00	97,48
50	7.805	7.806	9,46	106,7	0,00	88,85	11,37		0,00	0,00	97,22
51	7.565	7.565	9,88	106,7	0,00		11,22			0,00	96,79
52	8.214	8.214	8,76	106,7	0,00	89,29	11,63		0,00	0,00	97,92
53	7.872	7.872	9,34	106,7	0,00	88,92	11,42			0,00	97,34
WEC 01	2.344	2.350	25,98	108,9	0,00	78,42		-3,00		0,00	82,94
WEC 02	1.990	1.998	28,06	108,9	0,00	77,01		-3,00		0,00	80,86
WEC 03	1.601	1.610	30,77	108,9	0,00	75,14		-3,00		0,00	78,16
WEC 04	1.888	1.895	28,73	108,9	0,00	76,55		-3,00		0,00	80,19
WEC 05	2.226	2.233	24,57	106,6	0,00	77,98		-3,00		0,00	82,02
WEC 06	1.461	1.471	31,88	108,9	0,00	74,35		-3,00		0,00	77,04
WEC 07	1.826	1.834	27,06	106,6	0,00	76,27		-3,00		0,00	79,53
WEC 09	1.646	1.655	26,08	104,1	0,00	75,38		-3,00		0,00	77,98
WEC 10	1.118	1.131	32,92	106,6	0,00	72,07		-3,00		0,00	73,67
WEC 11	1.497	1.507	29,48	106,6	0,00	74,56		-3,00	0,00	0,00	77,11
WEC 12	1.937	1.945	20,60	100,1		76,78		-3,00	0,00	0,00	79,48
WEC 13	1.483	1.493	31,04	108,1	0,00	74,48	5,63	-3,00	0,00	0,00	77,10
Summe			40,65								

Schall-Immissionsort: B04 Beeskow, Radinkendorfer Straße 37

Lautester Wert bis 95% Nennleistung

VVEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
13	6.341	6.343	14,15	108,1	0,00	87,05	9,89	-3,00	0,00	0,00	93,94
14	5.976	5.978	14,98	108,1	0,00	86,53	9,58	-3,00	0,00	0,00	93,11
15	5.783	5.785	15,44	108,1	0,00	86,25	9,41	-3,00	0,00	0,00	92,65
16	3.585	3.586	19,26	104,7	0,00	82,09	6,39	-3,00	0,00	0,00	85,48
17	3.352	3.353	20,12	104,7	0,00	81,51	6,12	-3,00	0,00	0,00	84,63
25	3.060	3.062	19,68	103,2	0,00	80,72	5,77	-3,00	0,00	0,00	83,49
26	2.715	2.718	21,17	103,2	0,00	79,68	5,31	-3,00	0,00	0,00	82,00
27	3.163	3.165	19,27	103,2	0,00	81,01	5,90	-3,00	0,00	0,00	83,91
28	3.264	3.266	18,86	103,2	0,00	81,28	6,03	-3,00	0,00	0,00	84,31
29	2.905	2.908	20,33	103,2	0,00	80,27	5,57	-3,00	0,00	0,00	82,84
30	2.445	2.448	22,45	103,2	0,00	78,77	4,94	-3,00	0,00	0,00	80,72
31	3.395	3.396	18,36	103,2	0,00	81,62	6,19	-3,00	0,00	0,00	84,81
32	2.878	2.880	20,45	103,2	0,00	80,19	5,53	-3,00	0,00	0,00	82,72

Projekt:

18-1-3048-003

Beschreibung

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

05.06.2020 09:28/3.3.289

DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com RAMBOLL

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite) WEA

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
33	3.555	3.556	17,77	103,2	0,00	82,02	6,38	-3,00	0,00	0,00	85,40
34	2.390	2.392	22,73	103,2	0,00	78,57	4,86	-3,00	0,00	0,00	80,44
35	3.134	3.136	19,38	103,2	0,00	80,93	5,86	-3,00	0,00	0,00	83,79
36	3.500	3.502	17,97	103,2	0,00	81,89	6,31	-3,00	0,00	0,00	85,20
37	2.561	2.563	21,89	103,2	0,00	79,18	5,10	-3,00	0,00	0,00	81,28
38	3.211	3.213	19,07	103,2	0,00	81,14	5,96	-3,00	0,00	0,00	84,10
39	3.463	3.465	18,11	103,2	0,00	81,79	6,27	-3,00	0,00	0,00	85,06
40	5.873	5.874	13,31	106,7	0,00	86,38	9,99	-3,00	0,00	0,00	93,36
41	6.396	6.396	12,17	106,7	0,00	87,12	10,39	-3,00	0,00	0,00	94,51
42	6.095	6.095	12,82	106,7	0,00	86,70	10,16	-3,00	0,00	0,00	93,86
43	6.659	6.660	11,62	106,7	0,00	87,47	10,59	-3,00	0,00	0,00	95,06
44	6.032	6.033	12,95	106,7	0,00	86,61	10,11	-3,00	0,00	0,00	93,72
45	6.410	6.410	12,14	106,7	0,00	87,14	10,40	-3,00	0,00	0,00	94,54
46	6.627	6.628	14,61	106,7	0,00	87,43	7,63	-3,00	0,00	0,00	92,06
47	6.157	6.158	15,56	106,7	0,00	86,79	7,32	-3,00	0,00	0,00	91,11
48	6.840	6.840	11,26	106,7	0,00	87,70	10,72	-3,00	0,00	0,00	95,42
49	6.589	6.590	11,76	106,7	0,00	87,38	10,54	-3,00	0,00	0,00	94,92
50	6.352	6.352	12,26	106,7	0,00	87,06	10,36	-3,00	0,00	0,00	94,42
51	6.039	6.040	12,94	106,7	0,00	86,62	10,12	-3,00	0,00	0,00	93,74
52	6.753	6.754	11,43	106,7	0,00	87,59	10,66	-3,00	0,00	0,00	95,25
53	6.308	6.309	12,35	106,7	0,00	87,00	10,33	-3,00	0,00	0,00	94,33
WEC 01	3.388	3.393	21,12	108,9	0,00	81,61	9,19	-3,00	0,00	0,00	87,80
WEC 02	3.282	3.286	21,55	108,9	0,00	81,33	9,04	-3,00	0,00	0,00	87,37
WEC 03	2.994	2.999	22,78	108,9	0,00	80,54	8,61	-3,00	0,00	0,00	86,15
WEC 04	2.959	2.964	22,93	108,9	0,00	80,44	8,55	-3,00	0,00	0,00	85,99
WEC 05	2.969	2.974	20,84	106,6	0,00	80,47	8,28	-3,00	0,00	0,00	85,75
WEC 06	2.650	2.655	24,39	108,9	0,00	79,48	8,05	-3,00	0,00	0,00	84,54
WEC 07	2.599	2.604	22,59	106,6	0,00	79,31	7,69	-3,00	0,00	0,00	84,00
WEC 09	2.059	2.066	23,34	104,1	0,00	77,30	6,42	-3,00	0,00	0,00	80,72
WEC 10	1.864	1.871	26,81	106,6	0,00	76,44	6,34	-3,00	0,00	0,00	79,78
WEC 11	1.685	1.693	28,05	106,6	0,00	75,57	5,96	-3,00	0,00	0,00	78,54
WEC 12	1.593	1.601	22,94	100,1	0,00	75,09	5,06	-3,00	0,00	0,00	77,15
WEC 13	1.298	1.309	32,64	108,1	0,00	73,34	5,17	-3,00	0,00	0,00	75,51
Summe			38,26								

Schall-Immissionsort: B05 Beeskow, Waldweg 2a

Lautester Wert bis 95% Nennleistung WEA

VVE	Α.											
Nr.		Abstand	Schallweg	Berechnet		Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
		[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
13		6.468	6.470	13,88	108,1	0,00	87,22	10,00	-3,00	0,00	0,00	94,22
14		6.105	6.107	14,68	108,1	0,00	86,72	9,69	-3,00	0,00	0,00	93,41
15		5.908	5.910	15,14	108,1	0,00	86,43	9,52	-3,00	0,00	0,00	92,95
16		3.713	3.714	18,81	104,7	0,00	82,40	6,54	-3,00	0,00	0,00	85,93
17		3.482	3.483	19,63	104,7	0,00	81,84	6,27	-3,00	0,00	0,00	85,11
25		3.165	3.167	19,26	103,2	0,00	81,01	5,90	-3,00	0,00	0,00	83,91
26		2.818	2.820	20,71	103,2	0,00	80,01	5,45	-3,00	0,00	0,00	82,46
27		3.260	3.262	18,88	103,2	0,00	81,27	6,02	-3,00	0,00	0,00	84,29
28		3.355	3.357	18,52	103,2	0,00	81,52	6,14	-3,00	0,00	0,00	84,66
29		2.999	3.001	19,94	103,2	0,00	80,55	5,69	-3,00	0,00	0,00	83,23
30		2.541	2.543	21,99	103,2	0,00	79,11	5,08	-3,00	0,00	0,00	81,18
31		3.478	3.480	18,05	103,2	0,00	81,83	6,29	-3,00	0,00	0,00	85,12
32		2.962	2.964	20,09	103,2	0,00	80,44	5,64	-3,00	0,00	0,00	83,08
33		3.632	3.634	17,49	103,2	0,00	82,21	6,47	-3,00	0,00	0,00	85,68
34		2.476	2.478	22,30	103,2	0,00	78,88	4,98	-3,00	0,00	0,00	80,87
35		3.209	3.211	19,08	103,2	0,00	81,13	5,96	-3,00	0,00	0,00	84,09
36		3.570	3.572	17,71	103,2	0,00	82,06	6,40	-3,00	0,00	0,00	85,46
37		2.634	2.636	21,55	103,2	0,00	79,42	5,20	-3,00	0,00	0,00	81,62
38		3.274	3.276	18,82	103,2	0,00	81,31	6,04	-3,00	0,00	0,00	84,35
39		3.525	3.527	17,88	103,2	0,00	81,95	6,34	-3,00	0,00	0,00	85,29
40		5.967	5.968	13,10	106,7	0,00	86,52	10,06	-3,00	0,00	0,00	93,58
41		6.486	6.487	11,98	106,7	0,00	87,24	10,46	-3,00	0,00	0,00	94,70
42		6.184	6.184	12,62	106,7	0,00	86,83	10,23	-3,00	0,00	0,00	94,06
43		6.745	6.746	11,45	106,7	0,00	87,58	10,65	-3,00	0,00	0,00	95,23

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com RAMBOLL

05.06.2020 09:28/3.3.289

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite)

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
44	6.116	6.117	12,77	106,7	0,00	86,73	10,18	-3,00	0,00	0,00	93,91	
45	6.492	6.493	11,96	106,7	0,00	87,25	10,47	-3,00	0,00	0,00	94,71	
46	6.705	6.706	14,46	106,7	0,00	87,53	7,68	-3,00	0,00	0,00	92,21	
47	6.234	6.235	15,41	106,7	0,00	86,90	7,37	-3,00	0,00	0,00	91,27	
48	6.868	6.869	11,20	106,7	0,00	87,74	10,74	-3,00	0,00	0,00	95,48	
49	6.612	6.613	11,72	106,7	0,00	87,41	10,55	-3,00	0,00	0,00	94,96	
50	6.368	6.368	12,23	106,7	0,00	87,08	10,37	-3,00	0,00	0,00	94,45	
51	6.050	6.050	12,92	106,7	0,00	86,64	10,13	-3,00	0,00	0,00	93,76	
52	6.768	6.768	11,40	106,7	0,00	87,61	10,67	-3,00	0,00	0,00	95,28	
53	6.314	6.315	12,34	106,7	0,00	87,01	10,33	-3,00	0,00	0,00	94,34	
WEC 01	3.519	3.523	20,61	108,9	0,00	81,94	9,37	-3,00	0,00	0,00	88,31	
WEC 02	3.411	3.416	21,03	108,9	0,00	81,67	9,22	-3,00	0,00	0,00	87,89	
WEC 03	3.122	3.127	22,22	108,9	0,00	80,90	8,80	-3,00	0,00	0,00	86,70	
WEC 04	3.089	3.094	22,36	108,9	0,00	80,81	8,75	-3,00	0,00	0,00	86,56	
WEC 05	3.099	3.104	20,27	106,6	0,00	80,84	8,48	-3,00	0,00	0,00	86,32	
WEC 06	2.779	2.784	23,76	108,9	0,00	79,89	8,27	-3,00	0,00	0,00	85,16	
WEC 07	2.729	2.734	21,95	106,6	0,00	79,74	7,91	-3,00	0,00	0,00	84,64	
WEC 09	2.189	2.195	22,57	104,1	0,00	77,83	6,66	-3,00	0,00	0,00	81,49	
WEC 10	1.992	1.999	25,98	106,6	0,00	77,01	6,60	-3,00	0,00	0,00	80,61	
WEC 11	1.815	1.823	27,14	106,6	0,00	76,21	6,24	-3,00	0,00	0,00	79,45	
WEC 12	1.717	1.725	22,05	100,1	0,00	75,74	5,30	-3,00	0,00	0,00	78,03	
WEC 13	1.428	1.438	31,50	108,1	0,00	74,16	5,49	-3,00	0,00	0,00	76,65	
Summe			37,55									

Schall-Immissionsort: B06 Beeskow, Schützenstraße 28

Lautester Wert bis 95% Nennleistung **WEA**

Adiv Nr. Abstand Schallweg Berechnet LWA Dc Abar Aatm Aar Amisc Α [dB(A)] [dB] [dB] [m] [m][dB(A)] [dB] [dB] [dB] [dB] [dB] 13 8.468 8.470 10,06 108,1 0,00 89,56 11,47 -3,00 0,00 0,00 98,03 8.005 8.006 14 10,87 108,1 0,00 89,07 11,16 -3,00 0,00 0,00 97,23 7.937 7.939 10,99 15 108.1 0.00 88.99 11.11 -3.00 0.00 0.00 97.11 16 5.262 5.263 14,24 104,7 0,00 85,42 8,07 -3,00 0,00 0,00 90,50 17 5.127 5.128 14,59 104,7 0,00 85,20 7,95 -3,00 0,00 0,00 90,15 3.927 3.928 16,47 103,2 25 0,00 82,88 6,82 -3,00 0,00 0,00 86,70 17.53 26 3 623 3 624 103.2 0.00 82.18 0.00 6.46 -3.00 0.00 85.65 16,86 27 3.811 3.813 103.2 0.00 82.63 6.68 -3.00 0,00 0.00 86.31 28 3.732 3.734 17,14 103,2 0,00 82,44 6,59 -3,00 0,00 0,00 86,03 29 3.544 3.546 17,81 103,2 0,00 82,00 6,37 -3,00 0,00 0,00 85,36 3.271 3.273 30 18,84 103.2 0.00 81.30 -3.00 0.000.00 84.33 6.03 31 3.671 3.673 17,35 103.2 0.00 82.30 6.52 -3,00 0.00 0.00 85.82 32 3.313 3.315 18,67 103,2 0,00 81,41 6,09 -3,00 0,00 0,00 84,50 33 3.653 3.655 17,41 103,2 0,00 82,26 6,50 -3,00 0,00 0,00 85,76 3.044 3.046 19,75 103,2 5.75 34 0,00 80,68 -3,00 0.00 0.00 83.42 35 3.293 3.295 18,75 103,2 0,00 81,36 6,06 -3,00 0,00 0,00 84,42 3.441 3.443 18,19 103,2 0,00 81,74 6,24 84,98 36 -3,00 0.00 0.00 37 2.873 2.875 20,47 103,2 0,00 80,17 5,52 -3,00 0,00 0,00 82,70 19.56 38 3 089 3 091 103.2 0.00 80.80 5.80 -3.00 0.00 0.00 83.61 18,99 39 3.233 3.235 103,2 0,00 81,20 5,99 -3,00 0,00 0,00 84,18 40 6.050 6.051 12,91 106,7 0,00 86,64 10,13 -3,00 0,00 0,00 93,76 41 6.423 6.424 12,11 106.7 0,00 87,16 10,41 -3,00 0,00 0.00 94,57

106.7

106,7

106,7

106,7

106,7

106,7

106,7

106.7

106,7

16,11 51 4.365 4.366 17,25 106,7 0,00 83,80 8,63 -3,00 0,00 0,00 89,43 52 5.111 5.112 15,17 106,7 0,00 85,17 9,34 -3,00 0,00 0.00 91,51 53 4.543 4.543 16.73 106.7 0.00 84.15 8,81 -3.00 0.00 0.00 89,95 WEC 01 5.285 5.288 15,03 108,9 0,00 85,47 11,43 -3,00 0,00 0,00 93,90

0.00 86,71

0,00 86,43

0.00 86.99

0,00 86,33

0,00 85,17

0.00 84.56

87.31

86,87

85,71

0.00

0,00

0,00

10.17

10.50

10,02

10,26

7.42

7,11

9,63

9,34

9.02

-3.00

-3.00

-3,00

-3,00

-3,00

-3,00

-3.00

-3.00 0.00

 $-3.00 \quad 0.00$

0.00

0,00

0,00

0,00

0,00

0,00

0.00

0.00

0.00

0,00

0,00

0.00

0,00

0.00

0.00

0.00

93.89

94.81

93.45

94,13

91.41

90,44

92.34

91.51

90 57

(Fortsetzung nächste Seite)...

6.105

6.537

5.910

6.218

6.301

5.843

5.439

5.111

4.761

6 106

6.537

5.911

6.219

6.302

5.844

5.440

5.111

4.762

12.79

11,87

13,23

12,55

15.27

16,24

14,34

15,17

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

42

43

44

45

46

47

48

49

50

Projekt:

18-1-3048-003

Beschreibung:

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

Berechnet: 05.06.2020 09:28/3.3.289

RAMBOLL

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite)

Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
5.350	5.353	14,86	108,9	0,00	85,57	11,49	-3,00	0,00	0,00	94,06
5.172	5.175	15,33	108,9	0,00	85,28	11,32	-3,00	0,00	0,00	93,60
4.976	4.979	15,86	108,9	0,00	84,94	11,12	-3,00	0,00	0,00	93,06
4.786	4.789	14,37	106,6	0,00	84,60	10,62	-3,00	0,00	0,00	92,22
4.809	4.812	16,34	108,9	0,00	84,65	10,94	-3,00	0,00	0,00	92,59
4.558	4.561	15,04	106,6	0,00	84,18	10,37	-3,00	0,00	0,00	91,55
4.050	4.053	14,51	104,1	0,00	83,16	9,39	-3,00	0,00	0,00	89,55
4.123	4.127	16,42	106,6	0,00	83,31	9,86	-3,00	0,00	0,00	90,17
3.775	3.779	17,62	106,6	0,00	82,55	9,42	-3,00	0,00	0,00	88,97
3.405	3.410	13,53	100,1	0,00	81,65	7,90	-3,00	0,00	0,00	86,55
3.480	3.484	20,13	108,1	0,00	81,84	9,17	-3,00	0,00	0,00	88,01
		33,10								
	[m] 5.350 5.172 4.976 4.786 4.809 4.558 4.050 4.123 3.775 3.405	[m] [m] 5.350 5.353 5.172 5.175 4.976 4.979 4.786 4.789 4.809 4.812 4.558 4.561 4.050 4.053 4.123 4.127 3.775 3.779 3.405 3.410	[m] [m] [dB(A)] 5.350 5.353 14,86 5.172 5.175 15,33 4.976 4.979 15,86 4.786 4.789 14,37 4.809 4.812 16,34 4.558 4.561 15,04 4.050 4.053 14,51 4.123 4.127 16,42 3.775 3.779 17,62 3.405 3.410 13,53 3.480 3.484 20,13	[m] [m] [dB(A)] [dB(A)] [5.350 5.353 14,86 108,9 5.172 5.175 15,33 108,9 4.976 4.979 15,86 108,9 4.786 4.789 14,37 106,6 4.809 4.812 16,34 108,9 4.558 4.561 15,04 106,6 4.050 4.053 14,51 104,1 4.123 4.127 16,42 106,6 3.775 3.779 17,62 106,6 3.405 3.410 13,53 100,1 3.480 3.484 20,13 108,1	[m] [m] [dB(A)] [dB(A)] [dB] 5.350 5.353 14,86 108,9 0,00 5.172 5.175 15,33 108,9 0,00 4.976 4.979 15,86 108,9 0,00 4.786 4.789 14,37 106,6 0,00 4.809 4.812 16,34 108,9 0,00 4.558 4.561 15,04 106,6 0,00 4.050 4.053 14,51 104,1 0,00 4.123 4.127 16,42 106,6 0,00 3.775 3.779 17,62 106,6 0,00 3.405 3.410 13,53 100,1 0,00 3.480 3.484 20,13 108,1 0,00	[m] [m] [dB(A)] [dB(A)] [dB] [dB] 5.350 5.353 14,86 108,9 0,00 85,57 5.172 5.175 15,33 108,9 0,00 85,28 4.976 4.979 15,86 108,9 0,00 84,94 4.786 4.789 14,37 106,6 0,00 84,60 4.809 4.812 16,34 108,9 0,00 84,65 4.558 4.561 15,04 106,6 0,00 84,18 4.050 4.053 14,51 104,1 0,00 83,16 4.123 4.127 16,42 106,6 0,00 83,31 3.775 3.779 17,62 106,6 0,00 82,55 3.405 3.410 13,53 100,1 0,00 81,65 3.480 3.484 20,13 108,1 0,00 81,84	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 5.350 5.353 14,86 108,9 0,00 85,57 11,49 5.172 5.175 15,33 108,9 0,00 85,28 11,32 4.976 4.979 15,86 108,9 0,00 84,94 11,12 4.786 4.789 14,37 106,6 0,00 84,60 10,62 4.809 4.812 16,34 108,9 0,00 84,65 10,94 4.558 4.561 15,04 106,6 0,00 84,18 10,37 4.050 4.053 14,51 104,1 0,00 83,16 9,39 4.123 4.127 16,42 106,6 0,00 83,31 9,86 3.775 3.779 17,62 106,6 0,00 82,55 9,42 3.405 3.410 13,53 100,1 0,00 81,65 7,90 3.480 3.484 20,13 108,1 0,00 81,84 9,17	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] 5.350 5.353 14,86 108,9 0,00 85,57 11,49 -3,00 5.172 5.175 15,33 108,9 0,00 85,28 11,32 -3,00 4.976 4.979 15,86 108,9 0,00 84,94 11,12 -3,00 4.786 4.789 14,37 106,6 0,00 84,60 10,62 -3,00 4.809 4.812 16,34 108,9 0,00 84,65 10,94 -3,00 4.558 4.561 15,04 106,6 0,00 84,18 10,37 -3,00 4.050 4.053 14,51 104,1 0,00 83,16 9,39 -3,00 4.123 4.127 16,42 106,6 0,00 83,31 9,86 -3,00 3.775 3.779 17,62 106,6 0,00 82,55 9,42 -3,00 3.480 3.484 20,13 108,1 0,00 81,84 9,17 -3,00	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] 5.350 5.353 14,86 108,9 0,00 85,57 11,49 -3,00 0,00 5.172 5.175 15,33 108,9 0,00 85,28 11,32 -3,00 0,00 4.976 4.979 15,86 108,9 0,00 84,94 11,12 -3,00 0,00 4.786 4.789 14,37 106,6 0,00 84,60 10,62 -3,00 0,00 4.809 4.812 16,34 108,9 0,00 84,65 10,94 -3,00 0,00 4.558 4.561 15,04 106,6 0,00 84,18 10,37 -3,00 0,00 4.050 4.053 14,51 104,1 0,00 83,16 9,39 -3,00 0,00 4.123 4.127 16,42 106,6 0,00 83,31 9,86 -3,00 0,00 3.775 3.779 17,62 106,6 0,00 82,55 9,42 -3,00 0,00 3.405 3.410 13,53 100,1 0,00 81,65 7,90 -3,00 0,00 3.480 3.484 20,13 108,1 0,00 81,84 9,17 -3,00 0,00	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 5.350 5.353 14,86 108,9 0,00 85,57 11,49 -3,00 0,00 0,00 5.172 5.175 15,33 108,9 0,00 85,28 11,32 -3,00 0,00 0,00 4.976 4.979 15,86 108,9 0,00 84,94 11,12 -3,00 0,00 0,00 4.786 4.789 14,37 106,6 0,00 84,60 10,62 -3,00 0,00 0,00 4.809 4.812 16,34 108,9 0,00 84,65 10,94 -3,00 0,00 0,00 4.558 4.561 15,04 106,6 0,00 84,18 10,37 -3,00 0,00 0,00 4.050 4.053 14,51 104,1 0,00 83,16 9,39 -3,00 0,00 0,00 4.123 4.127 16,42 106,6 0,00 83,31 9,86 -3,00 0,00 0,00 3.775 3.779 17,62 106,6 0,00 82,55 9,42 -3,00 0,00 0,00 3.405 3.410 13,53 100,1 0,00 81,65 7,90 -3,00 0,00 0,00 3.480 3.484 20,13 108,1 0,00 81,84 9,17 -3,00 0,00 0,00

Schall-Immissionsort: R01 Reitz-Neuendorf, Schrödershof 2

Lautester Wert bis 95% Nennleistung WEA

VVEA											
Nr.	Abstand	Schallweg	Berechnet		Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
13	1.712	1.718	31,08	108,1	0,00	75,70	4,32	-3,00	0,00	0,00	77,02
14	1.142	1.151	35,66	108,1	0,00	72,22	3,21	-3,00	0,00	0,00	72,44
15	1.333	1.341	33,94	108,1	0,00	73,55	3,60	-3,00	0,00	0,00	74,15
16	1.679	1.680	28,48	104,7	0,00	75,51	3,75	-3,00	0,00	0,00	76,26
17	1.774	1.776	27,85	104,7	0,00	75,99	3,91	-3,00	0,00	0,00	76,90
25	3.353	3.355	18,52	103,2	0,00	81,51	6,13	-3,00	0,00	0,00	84,65
26	3.509	3.510	17,94	103,2	0,00	81,91	6,32	-3,00	0,00	0,00	85,23
27	3.627	3.629	17,51	103,2	0.00	82,19	6.47	-3,00	0.00	0,00	85,66
28	3.855	3.856	16,72	103,2	0.00	82,72	6.73	-3,00	0.00	0,00	86,46
29	3.766	3.768	17,02	103,2		82,52		-3,00		0,00	86,15
30	3.800	3.801	16,90	103,2		82,60		-3,00		0,00	86,27
31	4.097	4.098	15,91	103,2		83,25		-3,00		0,00	87,26
32	4.058	4.059	16,04	103,2		83,17		-3,00		0,00	87,13
33	4.324	4.325	15,19	103,2		83,72		-3,00		0,00	87,98
34	4.049	4.050	16,07	103,2		83,15		-3,00		0,00	87,10
35	4.334	4.335	15,16	103,2		83,74		-3,00		0,00	88,01
36	4.559	4.560	14,48	103,2		84,18		-3,00		0,00	88,69
37	4.365	4.366	15,07	103,2		83,80		-3,00		0,00	88,10
38	4.690	4.691	14,10	103,2		84,42		-3,00		0,00	89,07
39	4.799	4.800	13,78	103,2		84,63		-3,00		0,00	89,39
40	4.469	4.470	16,94	106,7		84,01		-3,00		0,00	89,74
41	4.409	4.470	15,48	106,7		84,96		-3,00		0,00	91,19
42	4.885	4.885	15,46	106,7		84,78		-3,00		0,00	90,91
42											
	5.416	5.417	14,40	106,7		85,67		-3,00		0,00	92,28
44	5.111	5.112	15,17	106,7		85,17		-3,00		0,00	91,51
45	5.419	5.420	14,39	106,7		85,68		-3,00		0,00	92,29
46	5.787	5.788	16,36	106,7		86,25		-3,00		0,00	90,32
47	5.527	5.528	16,95	106,7		85,85		-3,00		0,00	89,73
48	7.870	7.871	9,34	106,7			11,42			0,00	97,34
49	7.843	7.843	9,39	106,7			11,40			0,00	97,29
50	7.884	7.885	9,32	106,7		88,94	11,42			0,00	97,36
51	7.825	7.826	9,42	106,7		88,87	11,39			0,00	97,26
52	8.248	8.248	8,70	106,7		89,33	11,65			0,00	97,98
53	8.164	8.164	8,84	106,7		89,24		-3,00		0,00	97,84
WEC 01	1.630	1.638	30,55	108,9	0,00	75,29		-3,00		0,00	78,37
WEC 02	1.712	1.719	29,96	108,9	0,00	75,71		-3,00		0,00	78,97
WEC 03	2.052	2.058	27,69	108,9	0,00	77,27		-3,00		0,00	81,24
WEC 04	2.025	2.031	27,85	108,9	0,00	77,15		-3,00		0,00	81,07
WEC 05	2.119	2.125	25,21	106,6	0,00	77,55		-3,00		0,00	81,39
WEC 06	2.356	2.361	25,92	108,9	0,00	78,46		-3,00		0,00	83,00
WEC 07	2.409	2.414	23,57	106,6	0,00	78,65		-3,00		0,00	83,02
WEC 09	2.954	2.958	18,73	104,1		80,42		-3,00		0,00	85,33
WEC 10	3.143	3.147	20,09	106,6	0,00	80,96	8,54	-3,00	0,00	0,00	86,50
WEC 11	3.310	3.314	19,40	106,6	0,00	81,41	8,79	-3,00	0,00	0,00	87,19
WEC 12	3.553	3.556	12,98	100,1	0,00	82,02	8,08	-3,00	0,00	0,00	87,10
WEC 13	3.690	3.693	19,34	108,1	0,00	82,35	9,45	-3,00	0,00	0,00	88,80
Summe			41,58								

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

18-1-3048-NF Seite 46/91

Projekt:

18-1-3048-003

Beschreibung:

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:28/3.3.289

RAMBOLL

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: RO2 Reitz-Neuendorf, Feldweg 2

Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Berechnet LWA Dc Adiv Agir Agir Amisc Agir Agir	WEA	wert bis	95% Nenni	eistung								
Im		Abotond	Caballuga	Darachmat	1 \ \ \ \ \	Do	۸ مان	A a toa	۸۵۳	Abar	A main a	۸
13 3.631 3.633 21,74 108,1 0,00 80,59 6,34 -3,00 0,00 0,00 80,39 15 3.321 3.324 22,90 108,1 0,00 80,59 6,34 -3,00 0,00 0,00 85,19 16 1.250 1.251 31,80 104,7 0,00 72,95 2,99 -3,00 0,00 0,00 75,23 25 1.891 1.893 25,51 104,7 0,00 77,31 3,51 -3,00 0,00 75,23 26 2.188 2.190 23,79 103,2 0,00 77,30 4,37 -3,00 0,00 78,68 28 2.266 2.228 23,58 103,2 0,00 77,96 4,63 -3,00 0,00 79,96 29 2.297 2.299 23,21 103,2 0,00 79,11 5,08 3,00 0,00 0,00 78,59 30 2.542 2.543 21,99 <td>INI .</td> <td></td>	INI .											
14 3.012 3.015 24,16 108,1 0.00 81,93 6.34 3.00 0.00 0.00 83,93 15 3.321 3.324 22,90 108,1 0.00 81,43 6.30 0.00 0.00 0,00 72,94 17 1.534 1.536 29,51 104,7 0.00 76,54 4,12 3.00 0.00 0,00 77,66 26 2.188 2.190 23,79 103,2 0.00 77,81 4,57 3,00 0.00 0,00 77,66 28 2.226 2.228 23,58 103,2 0.00 77,81 4,57 3,00 0.00 70,00 78,59 29 2.297 2.298 23,21 103,2 0.00 77,81 4,57 3,00 0.00 0.00 79,59 30 2.542 2.543 21,99 103,2 0.00 79,15 5,13 3,00 0.00 0.00 80,0 3,00 0.00	10											
15 3,321 3,324 22,90 108,1 0,00 81,31 6,76 3,00 0,00 0,00 72,94 17 1,534 1,536 29,51 104,7 0,00 74,73 3,51 3,00 0,00 0,00 75,23 25 1,891 1,893 25,51 103,2 0,00 77,81 4,12 3,00 0,00 77,93 26 2,188 2,190 23,79 103,2 0,00 77,30 4,39 3,00 0,00 79,38 28 2,263 2,228 23,58 103,2 0,00 77,96 4,63 3,00 0,00 79,96 30 2,542 2,543 21,99 103,2 0,00 79,11 5,08 3,00 0,00 79,96 30 2,542 2,543 21,99 103,2 0,00 79,11 5,08 3,00 0,00 0,00 79,96 30 2,546 2,547 21,76 103,2												
16 1,250 1,251 31,80 104,7 0,00 72,94 2,99 3,00 0,00 0,00 72,94 17 1,534 1,536 29,51 104,7 0,00 74,73 3,51 3,00 0,00 0,00 75,23 25 1,891 1,893 25,51 103,2 0,00 77,81 4,57 3,00 0,00 79,38 27 2,063 2,065 24,49 103,2 0,00 77,96 4,63 -3,00 0,00 70,96 28 2,226 2,228 23,58 103,2 0,00 78,23 4,73 -3,00 0,00 0,00 79,96 30 2,542 2,543 21,99 103,2 0,00 78,65 4,89 -3,00 0,00 0,00 80,05 31 2,542 2,543 21,97 103,2 0,00 79,11 5,00 0,00 0,00 80,55 32 2,566 2,567 21,87												
17 1,534 1,536 29,51 104,7 0,00 74,73 3,51 -3,00 0,00 0,00 75,23 26 2,188 2,190 23,79 103,2 0,00 77,81 4,57 -3,00 0,00 0,00 77,86 28 2,226 2,228 23,58 103,2 0,00 77,36 4,63 -3,00 0,00 79,59 29 2,297 2,299 23,21 103,2 0,00 78,23 4,73 -3,00 0,00 0,00 79,95 30 2,542 2,543 21,99 103,2 0,00 79,11 5,08 -3,00 0,00 79,95 30 2,566 2,567 21,87 103,2 0,00 79,17 5,14 -3,00 0,00 0,00 81,18 31 2,766 2,567 21,76 103,2 0,00 79,27 5,14 -3,00 0,00 80,55 32 2,566 2,567 21,76 </td <td></td>												
25 1.891 1.893 25,51 103,2 0,00 76,54 4,12 -3,00 0,00 0,00 77,66 26 2.188 2.190 23,79 103,2 0,00 77,30 4,39 -3,00 0,00 0,00 78,68 28 2.226 2.228 23,58 103,2 0,00 77,30 4,39 -3,00 0,00 0,00 79,59 29 2.297 2.299 23,21 103,2 0,00 78,65 4,83 -3,00 0,00 0,00 79,96 30 2.542 2.543 21,199 103,2 0,00 78,65 4,89 -3,00 0,00 0,00 80,75 31 2.412 2.414 22,62 103,2 0,00 79,19 5,11 -3,00 0,00 0,00 80,01 32 2.566 2.567 21,76 103,2 0,00 79,74 5,34 -3,00 0,00 0,00 82,22 35 <td></td>												
26 2.188 2.190 23,79 103,2 0,00 77,81 4,57 -3,00 0,00 0,00 79,36 28 2.226 2.228 2.238 21,518 1103,2 0,00 77,96 4,63 -3,00 0,00 0,00 79,56 29 2.297 2.299 23,21 103,2 0,00 78,56 4,83 -3,00 0,00 0,00 79,96 30 2.542 2.543 21,99 103,2 0,00 78,65 4,89 -3,00 0,00 0,00 80,55 31 2.412 2.414 22,62 103,2 0,00 79,19 5,11 -3,00 0,00 0,00 80,13 33 2.590 2.591 21,76 103,2 0,00 79,74 5,14 -3,00 0,00 80,41 34 2.766 2.767 20,95 103,2 0,00 79,74 5,34 -3,00 0,00 80,08 36 2.846<												
27 2.063 2.065 24,49 103,2 0,00 77,96 4,63 -3,00 0,00 0,00 78,68 28 2.226 2.228 23,58 103,2 0,00 77,96 4,63 -3,00 0,00 79,96 30 2.542 2.543 21,99 103,2 0,00 78,11 5,08 -3,00 0,00 0,00 79,19 31 2.412 2.414 22,62 103,2 0,00 79,19 5,11 -3,00 0,00 0,00 80,55 32 2.566 2.567 21,76 103,2 0,00 79,19 5,14 -3,00 0,00 0,00 81,41 34 2.766 2.767 20,95 103,2 0,00 79,74 5,34 -3,00 0,00 0,00 82,08 35 2.735 2.736 21,09 103,2 0,00 80,79 5,49 -3,00 0,00 80,28 37 2.976 296 20,04<												
28 2.226 2.228 23,58 103,2 0,00 77,96 4,63 3,00 0,00 0,00 79,59 29 2.297 2.299 23,21 103,2 0,00 78,23 4,73 -3,00 0,00 0,00 79,11 31 2.412 2.414 22,62 103,2 0,00 79,11 5,08 3,00 0,00 0,00 81,18 32 2.566 2.567 21,87 103,2 0,00 79,27 5,14 -3,00 0,00 0,00 81,41 34 2.766 2.567 20,95 103,2 0,00 79,27 5,14 -3,00 0,00 0,00 81,41 34 2.766 2.767 20,95 103,2 0,00 79,27 5,34 -3,00 0,00 0,00 82,22 35 2.735 2.736 21,09 103,2 0,00 80,49 5,38 -3,00 0,00 0,00 82,03 36												
29 2.297 2.299 23,21 103,2 0,00 78,23 4,73 3,00 0,00 70,96 30 2.542 2.543 21,99 103,2 0,00 79,11 5,08 3,00 0,00 0,00 81,18 31 2.412 2.414 22,62 103,2 0,00 79,19 5,11 3,00 0,00 0,00 80,55 32 2.566 2.567 21,87 103,2 0,00 79,19 5,11 -3,00 0,00 0,00 81,13 34 2.766 2.767 20,95 103,2 0,00 79,84 5,38 -3,00 0,00 0,00 82,22 36 2.846 2.848 20,59 103,2 0,00 80,47 5,54 -3,00 0,00 0,00 82,28 37 2.975 2.976 20,04 103,2 0,00 80,47 5,78 -3,00 0,00 0,00 83,52 39 3.108 3.109 <td></td>												
30 2.542 2.543 21,99 103,2 0,00 79,11 5,08 -3,00 0,00 0,00 81,18 31 2.412 2.414 22,62 103,2 0,00 78,65 4,89 -3,00 0,00 0,00 80,55 32 2.566 2.567 21,87 103,2 0,00 79,17 5,11 -3,00 0,00 0,00 0,00 0,00 81,41 34 2.766 2.767 20,95 103,2 0,00 79,74 5,34 -3,00 0,00 0,00 82,02 35 2.735 2.736 21,09 103,2 0,00 80,09 5,49 -3,00 0,00 82,08 36 2.846 2.848 20,59 103,2 0,00 80,47 5,66 -3,00 0,00 80,08 37 2.975 2.976 20,04 103,2 0,00 80,47 5,78 -3,00 0,00 0,00 82,58 37												
31 2.412 2.414 22,62 103,2 0,00 78,65 4,89 3,00 0,00 0,00 80,55 32 2.566 2.567 21,87 103,2 0,00 79,17 5,11 -3,00 0,00 0,00 81,31 34 2.766 2.767 20,95 103,2 0,00 79,74 5,34 -3,00 0,00 0,00 82,22 35 2.735 2.736 21,09 103,2 0,00 80,09 5,49 -3,00 0,00 0,00 80,20 36 2.846 2.848 20,59 103,2 0,00 80,74 5,78 -3,00 0,00 0,00 83,13 37 2.975 2.976 20,04 103,2 0,00 80,75 5,66 -3,00 0,00 80,00 83,13 38 3.069 3.070 19,49 103,2 0,00 80,85 5,83 -3,00 0,00 0,00 83,68 40												
32 2.566 2.567 21,87 103,2 0,00 79,19 5,11 -3,00 0,00 0,00 81,30 33 2.590 2.591 21,76 103,2 0,00 79,27 5,14 -3,00 0,00 0,00 82,22 35 2.735 2.736 21,09 103,2 0,00 79,74 5,34 -3,00 0,00 0,00 82,22 36 2.846 2.848 20,59 103,2 0,00 80,09 5,49 -3,00 0,00 0,00 83,13 37 2.975 2.976 20,04 103,2 0,00 80,74 5,78 -3,00 0,00 0,00 83,13 38 3.069 3.070 19,65 103,2 0,00 80,47 5,78 -3,00 0,00 0,00 83,52 39 3.108 3.109 19,49 103,2 0,00 80,74 5,78 -3,00 0,00 0,00 82,61 41												
33 2.590 2.591 21,76 103,2 0,00 79,27 5,14 -3,00 0,00 81,41 34 2.766 2.767 20,95 103,2 0,00 79,84 5,38 -3,00 0,00 0,00 82,22 35 2.846 2.848 20,59 103,2 0,00 80,09 5,49 -3,00 0,00 0,00 82,58 37 2.975 2.976 20,04 103,2 0,00 80,74 5,66 -3,00 0,00 0,00 83,13 38 3.069 3.070 19,65 103,2 0,00 80,74 5,66 -3,00 0,00 83,52 39 3.108 3.109 19,49 103,2 0,00 80,85 5,83 -3,00 0,00 0,00 83,68 40 2.532 2.533 24,16 106,7 0,00 80,79 7,19 -3,00 0,00 84,98 42 2.941 2.941 22,31 </td <td></td>												
34 2.766 2.767 20,95 103,2 0,00 79,84 5,38 -3,00 0,00 82,22 35 2.735 2.736 21,09 103,2 0,00 79,74 5,34 -3,00 0,00 82,08 36 2.846 2.848 20,59 103,2 0,00 80,09 5,49 -3,00 0,00 0,00 82,58 37 2.975 2.976 20,04 103,2 0,00 80,47 5,66 -3,00 0,00 0,00 83,13 38 3.069 3.070 19,65 103,2 0,00 80,74 5,78 -3,00 0,00 0,00 83,68 40 2.532 2.533 24,16 106,7 0,00 80,79 7,19 -3,00 0,00 0,00 84,87 41 3.086 3.504 20,109 106,7 0,00 81,89 7,70 -3,00 0,00 80,98 42 2.941 2.941 22,148												
35 2.735 2.736 21,09 103,2 0,00 79,74 5,34 -3,00 0,00 0,00 82,08 36 2.846 2.848 20,59 103,2 0,00 80,09 5,49 -3,00 0,00 0,00 82,58 37 2.975 2.976 20,04 103,2 0,00 80,47 5,766 -3,00 0,00 0,00 83,13 38 3.069 3.070 19,65 103,2 0,00 80,85 5,83 -3,00 0,00 0,00 83,68 40 2.532 2.533 24,16 106,7 0,00 80,97 7,19 -3,00 0,00 0,00 84,98 42 2.941 2.941 22,11 106,7 0,00 80,37 7,00 -3,00 0,00 0,00 84,37 43 3.504 3.504 20,09 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 <td></td>												
36 2.846 2.848 20,59 103,2 0,00 80,09 5,49 -3,00 0,00 0,00 82,58 37 2.975 2.976 20,04 103,2 0,00 80,47 5,66 -3,00 0,00 0,00 83,13 38 3.069 3.070 19,65 103,2 0,00 80,45 5,78 -3,00 0,00 0,00 83,58 40 2.532 2.533 24,16 106,7 0,00 80,87 2,00 0,00 0,00 0,00 83,68 41 3.086 3.087 21,70 106,7 0,00 80,77 7,19 -3,00 0,00 0,00 84,98 42 2.941 2.941 22,31 106,7 0,00 81,87 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 45						. ,		. ,				
37 2.975 2.976 20,04 103,2 0,00 80,47 5,66 -3,00 0,00 0,00 83,13 38 3.069 3.070 19,65 103,2 0,00 80,74 5,78 -3,00 0,00 0,00 83,52 39 3.108 3.109 19,49 103,2 0,00 80,79 7,19 -3,00 0,00 0,00 80,68 40 2.532 2.533 24,16 106,7 0,00 80,79 7,19 -3,00 0,00 0,00 84,98 42 2.941 2.941 22,31 106,7 0,00 80,79 7,10 -3,00 0,00 0,00 84,98 42 2.941 2.941 22,31 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 46	35											
38 3.069 3.070 19,65 103,2 0,00 80,74 5,78 -3,00 0,00 0,00 83,52 39 3.108 3.109 19,49 103,2 0,00 80,85 5,83 -3,00 0,00 0,00 83,68 40 2.532 2.533 24,16 106,7 0,00 80,79 7,19 -3,00 0,00 0,00 82,51 41 3.086 3.087 21,70 106,7 0,00 80,37 7,00 -3,00 0,00 0,00 84,98 42 2.941 2.2,31 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 81,81 7,66 -3,00 0,00 80,00 85,20 45 3.469 3.470 20,22 106,7 0,00 82,67 5,52 -3,00 0,00 80,00 85,19 47 3.545 </td <td></td>												
39 3.108 3.109 19,49 103,2 0,00 80,85 5,83 -3,00 0,00 0,00 82,51 40 2.532 2.533 24,16 106,7 0,00 79,07 6,44 -3,00 0,00 0,00 82,51 41 3.086 3.087 21,70 106,7 0,00 80,37 7,00 -3,00 0,00 0,00 84,98 42 2.941 2.2941 22,31 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 85,20 45 3.469 3.470 20,22 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 86,46 46 3.832 3.833 21,48 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 86,46 47 <td></td>												
40 2.532 2.533 24,16 106,7 0,00 79,07 6,44 -3,00 0,00 80,78 41 3.086 3.087 21,70 106,7 0,00 80,79 7,19 -3,00 0,00 0,00 84,98 42 2.941 2.941 22,31 106,7 0,00 80,37 7,00 -3,00 0,00 0,00 84,37 43 3.504 3.504 20,09 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,40 46 3.832 3.833 21,48 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 86,41 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,55 51 5.956 <td></td>												
41 3.086 3.087 21,70 106,7 0,00 80,79 7,19 -3,00 0,00 0,00 84,98 42 2.941 2.941 22,31 106,7 0,00 80,37 7,00 -3,00 0,00 0,00 84,37 43 3.504 3.504 20,09 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 80,94 7,26 -3,00 0,00 0,00 86,49 45 3.469 3.470 20,22 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 46 3.832 3.833 21,48 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 86,41 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,35 51 5.956 5.957 13,13 106,7 0,00 86,40 10,00 -3												
42 2.941 2.941 22,31 106,7 0,00 80,37 7,00 -3,00 0,00 0,00 84,37 43 3.504 3.504 20,09 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 80,94 7,26 -3,00 0,00 0,00 85,20 45 3.469 3.470 20,22 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 46 3.832 3.833 21,48 106,7 0,00 82,01 5,26 -3,00 0,00 0,00 86,46 48 5.896 5.897 13,26 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,55 51 <td></td> <td></td> <td></td> <td></td> <td>106,7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0,00</td> <td></td>					106,7						0,00	
43 3.504 3.504 20,09 106,7 0,00 81,89 7,70 -3,00 0,00 0,00 86,59 44 3.141 3.142 21,48 106,7 0,00 80,94 7,26 -3,00 0,00 0,00 85,20 45 3.469 3.470 20,22 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 46 3.832 3.833 21,48 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 86,46 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,32 50 5.956 5.957 13,13 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,35 51 5.952 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 94,32 53 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>. ,</td> <td> /</td> <td></td> <td></td> <td></td> <td></td> <td></td>						. ,	/					
44 3.141 3.142 21,48 106,7 0,00 80,94 7,26 -3,00 0,00 0,00 85,20 45 3.469 3.470 20,22 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 46 3.832 3.833 21,48 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 85,19 47 3.545 3.546 22,42 106,7 0,00 82,00 5,26 -3,00 0,00 0,00 84,26 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,46 10,00 -3,00 0,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 94,24 WEC												
45 3.469 3.470 20,22 106,7 0,00 81,81 7,66 -3,00 0,00 0,00 86,46 46 3.832 3.833 21,48 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 85,19 47 3.545 3.546 22,42 106,7 0,00 82,00 5,26 -3,00 0,00 0,00 84,26 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,42 49 5.887 5.887 13,28 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 94,24 WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34												
46 3.832 3.833 21,48 106,7 0,00 82,67 5,52 -3,00 0,00 0,00 85,19 47 3.545 3.546 22,42 106,7 0,00 82,00 5,26 -3,00 0,00 0,00 84,26 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,42 49 5.887 5.887 13,28 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,50 10,05 -3,00 0,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 93,55 52 6.306 6.366 12,36 106,7 0,00 87,00 10,33 -3,00 0,00 0,00 94,24 WE	44		3.142		106,7						0,00	85,20
47 3.545 3.546 22,42 106,7 0,00 82,00 5,26 -3,00 0,00 0,00 84,26 48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,42 49 5.887 5.887 13,28 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,50 10,05 -3,00 0,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 93,55 53 6.269 6.269 12,44 106,7 0,00 86,94 10,30 -3,00 0,00 0,00 94,24 WEC 01 1.746 1.753 29,71 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 94,24 <t< td=""><td>45</td><td>3.469</td><td>3.470</td><td></td><td></td><td>0,00</td><td>81,81</td><td></td><td></td><td></td><td></td><td></td></t<>	45	3.469	3.470			0,00	81,81					
48 5.896 5.897 13,26 106,7 0,00 86,41 10,00 -3,00 0,00 0,00 93,42 49 5.887 5.887 13,28 106,7 0,00 86,40 10,00 -3,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,50 10,05 -3,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 94,32 52 6.306 6.269 12,44 106,7 0,00 86,94 10,33 -3,00 0,00 0,00 94,32 WEC 01 1.746 1.753 29,71 108,9 0,00 77,78 6,34 -3,00 0,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 83,91 WEC 03 2.527	46	3.832	3.833		106,7	0,00	82,67				0,00	
49 5.887 5.887 13,28 106,7 0,00 86,40 10,00 -3,00 0,00 0,00 93,39 50 5.956 5.957 13,13 106,7 0,00 86,50 10,05 -3,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 94,32 52 6.306 6.366 12,36 106,7 0,00 87,00 10,33 -3,00 0,00 0,00 94,32 53 6.269 12,44 106,7 0,00 86,94 10,33 -3,00 0,00 0,00 94,22 WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34 -3,00 0,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,77 7,84 -3,00 0,00 0,00 83,91 WEC 04 2.158	47	3.545			106,7	0,00	82,00	5,26	-3,00	0,00	0,00	
50 5.956 5.957 13,13 106,7 0,00 86,50 10,05 -3,00 0,00 93,55 51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 93,50 52 6.306 6.269 12,44 106,7 0,00 86,94 10,30 -3,00 0,00 0,00 94,22 WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34 -3,00 0,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 81,98 WEC 03 2.527 2.531 25,01 108,9 0,00 77,07 7,84 -3,00 0,00 0,00 81,87 WEC 04 2.158 2.163 27,05 108,9 0,00 77,07 7,17 -3,00 0,00 0,00 81,87 WEC 05 <td></td> <td>5.896</td> <td>5.897</td> <td></td> <td>106,7</td> <td>0,00</td> <td>86,41</td> <td></td> <td></td> <td>0,00</td> <td></td> <td></td>		5.896	5.897		106,7	0,00	86,41			0,00		
51 5.932 5.933 13,18 106,7 0,00 86,46 10,03 -3,00 0,00 0,00 93,50 52 6.306 6.306 12,36 106,7 0,00 87,00 10,33 -3,00 0,00 94,32 53 6.269 6.269 12,44 106,7 0,00 86,94 10,30 -3,00 0,00 94,24 WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34 -3,00 0,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 81,98 WEC 03 2.527 2.531 25,01 108,9 0,00 77,70 7,17 -3,00 0,00 83,91 WEC 04 2.158 2.163 27,05 108,9 0,00 77,07 7,17 -3,00 0,00 0,00 81,87 WEC 05 1.824 1.831 </td <td>49</td> <td>5.887</td> <td>5.887</td> <td>13,28</td> <td>106,7</td> <td>0,00</td> <td>86,40</td> <td>10,00</td> <td>-3,00</td> <td>0,00</td> <td>0,00</td> <td>93,39</td>	49	5.887	5.887	13,28	106,7	0,00	86,40	10,00	-3,00	0,00	0,00	93,39
52 6.306 6.306 12,36 106,7 0,00 87,00 10,33 -3,00 0,00 94,32 53 6.269 6.269 12,44 106,7 0,00 86,94 10,30 -3,00 0,00 0,00 94,24 WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34 -3,00 0,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 81,98 WEC 03 2.527 2.531 25,01 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 83,91 WEC 04 2.158 2.163 27,05 108,9 0,00 77,70 7,17 -3,00 0,00 81,87 WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 79,51 WEC 07 2.247 2.55	50	5.956	5.957	13,13	106,7	0,00	86,50	10,05	-3,00	0,00	0,00	93,55
53 6.269 6.269 12,44 106,7 0,00 86,94 10,30 -3,00 0,00 94,24 WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34 -3,00 0,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 81,98 WEC 03 2.527 2.531 25,01 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 83,91 WEC 04 2.158 2.163 27,05 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 83,91 WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 79,51 WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.	51	5.932	5.933	13,18	106,7	0,00	86,46	10,03	-3,00	0,00	0,00	93,50
WEC 01 1.746 1.753 29,71 108,9 0,00 75,87 6,34 -3,00 0,00 79,21 WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 81,98 WEC 03 2.527 2.531 25,01 108,9 0,00 79,07 7,84 -3,00 0,00 0,00 83,91 WEC 04 2.158 2.163 27,05 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 81,87 WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 0,00 79,51 WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 W	52					0,00	87,00				0,00	
WEC 02 2.177 2.182 26,94 108,9 0,00 77,78 7,21 -3,00 0,00 0,00 81,98 WEC 03 2.527 2.531 25,01 108,9 0,00 79,07 7,84 -3,00 0,00 0,00 83,91 WEC 04 2.158 2.163 27,05 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 81,87 WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 0,00 79,51 WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 WEC 10 3.114 3.117 20,21 106,6 0,00 79,48 7,44 -3,00 0,00 0,00 86,38	53	6.269	6.269	12,44	106,7	0,00	86,94	10,30	-3,00	0,00	0,00	94,24
WEC 03 2.527 2.531 25,01 108,9 0,00 79,07 7,84 -3,00 0,00 0,00 83,91 WEC 04 2.158 2.163 27,05 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 81,87 WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 79,51 WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 WEC 09 2.650 2.654 20,14 104,1 0,00 79,48 7,44 -3,00 0,00 0,00 86,38 WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 0,00 86,38 W	WEC 01		1.753	29,71	108,9	0,00	75,87	6,34	-3,00	0,00	0,00	79,21
WEC 04 2.158 2.163 27,05 108,9 0,00 77,70 7,17 -3,00 0,00 0,00 81,87 WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 79,51 WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 WEC 09 2.650 2.654 20,14 104,1 0,00 79,48 7,44 -3,00 0,00 0,00 83,92 WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 0,00 86,38 WEC 11 3.011 3.015 20,66 106,6 0,00 80,48 7,32 -3,00 0,00 0,00 86,38 W	WEC 02				108,9	0,00	77,78				0,00	81,98
WEC 05 1.824 1.831 27,08 106,6 0,00 76,25 6,26 -3,00 0,00 79,51 WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 WEC 09 2.650 2.654 20,14 104,1 0,00 79,48 7,44 -3,00 0,00 83,92 WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 86,38 WEC 11 3.011 3.015 20,66 106,6 0,00 80,58 8,35 -3,00 0,00 0,00 85,93 WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 <t< td=""><td></td><td>2.527</td><td>2.531</td><td>25,01</td><td>108,9</td><td>0,00</td><td>79,07</td><td>7,84</td><td>-3,00</td><td>0,00</td><td>0,00</td><td>83,91</td></t<>		2.527	2.531	25,01	108,9	0,00	79,07	7,84	-3,00	0,00	0,00	83,91
WEC 06 2.577 2.581 24,76 108,9 0,00 79,24 7,93 -3,00 0,00 0,00 84,17 WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 WEC 09 2.650 2.654 20,14 104,1 0,00 79,48 7,44 -3,00 0,00 0,00 83,92 WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 0,00 86,38 WEC 11 3.011 3.015 20,66 106,6 0,00 80,58 8,35 -3,00 0,00 0,00 85,93 WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57	WEC 04	2.158	2.163	27,05	108,9	0,00	77,70	7,17	-3,00	0,00	0,00	81,87
WEC 07 2.247 2.251 24,47 106,6 0,00 78,05 7,07 -3,00 0,00 0,00 82,12 WEC 09 2.650 2.654 20,14 104,1 0,00 79,48 7,44 -3,00 0,00 83,92 WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 0,00 86,38 WEC 11 3.011 3.015 20,66 106,6 0,00 80,58 8,35 -3,00 0,00 0,00 85,93 WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57	WEC 05	1.824	1.831	27,08	106,6	0,00			-3,00	0,00	0,00	79,51
WEC 09 2.650 2.654 20,14 104,1 0,00 79,48 7,44 -3,00 0,00 0,00 83,92 WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 0,00 86,38 WEC 11 3.011 3.015 20,66 106,6 0,00 80,58 8,35 -3,00 0,00 0,00 85,93 WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57	WEC 06		2.581	24,76	108,9	0,00	79,24	7,93	-3,00	0,00	0,00	84,17
WEC 10 3.114 3.117 20,21 106,6 0,00 80,88 8,50 -3,00 0,00 0,00 86,38 WEC 11 3.011 3.015 20,66 106,6 0,00 80,58 8,35 -3,00 0,00 0,00 85,93 WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57												
WEC 11 3.011 3.015 20,66 106,6 0,00 80,58 8,35 -3,00 0,00 0,00 85,93 WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57	WEC 09	2.650	2.654	20,14	104,1	0,00	79,48	7,44	-3,00	0,00	0,00	83,92
WEC 12 2.974 2.978 15,28 100,1 0,00 80,48 7,32 -3,00 0,00 0,00 84,80 WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57	WEC 10	3.114	3.117	20,21	106,6	0,00	80,88	8,50	-3,00	0,00	0,00	86,38
WEC 13 3.369 3.373 20,57 108,1 0,00 81,56 9,01 -3,00 0,00 0,00 87,57		3.011	3.015		106,6	0,00	80,58	8,35	-3,00	0,00	0,00	85,93
		2.974	2.978	15,28		0,00	80,48	7,32	-3,00	0,00	0,00	84,80
Summe 40,33		3.369	3.373		108,1	0,00	81,56	9,01	-3,00	0,00	0,00	87,57
	Summe			40,33								

Schall-Immissionsort: R03 Rietz-Neuendorf, Beeskower Chaussee 1 Lautester Wert bis 95% Nennleistung

WEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
13	4.064	4.067	20,24	108,1	0,00	83,18	7,66	-3,00	0,00	0,00	87,85	
14	3.491	3.494	22,25	108,1	0,00	81,87	6,97	-3,00	0,00	0,00	85,84	
15	3.637	3.640	21,71	108,1	0,00	82,22	7,16	-3,00	0,00	0,00	86,38	
16	786	789	36,73	104,7	0,00	68,94	2,07	-3,00	0,00	0,00	68,01	
17	933	936	34,94	104,7	0,00	70,42	2,38	-3,00	0,00	0,00	69,80	
25	1.006	1.011	32,47	103,2	0,00	71,09	2,61	-3,00	0,00	0,00	70,70	
26	1.218	1.222	30,43	103,2	0,00	72,74	3,00	-3,00	0,00	0,00	72,74	
27	1.273	1.277	29,95	103,2	0,00	73,12	3,10	-3,00	0,00	0,00	73,22	
28	1.503	1.506	28,12	103,2	0,00	74,56	3,50	-3,00	0,00	0,00	75,05	
29	1.427	1.430	28,69	103,2	0,00	74,11	3,37	-3,00	0,00	0,00	74,48	

(Fortsetzung nächste Seite)...

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:28/3.3.289

RAMBOLL

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite) WEA

WEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
30	1.554	1.556	27,74	103,2	0,00	74,84	3,58	-3,00	0,00	0,00	75,43
31	1.751	1.754	26,39	103,2	0,00	75,88	3,91	-3,00	0,00	0,00	76,78
32	1.717	1.720	26,61	103,2	0,00	75,71	3,85	-3,00	0,00	0,00	76,56
33	1.988	1.991	24,92	103,2	0,00	76,98	4,27	-3,00	0,00	0,00	78,26
34	1.795	1.798	26,10	103,2	0,00	76,09	3,98	-3,00	0,00	0,00	77,07
35	1.980	1.983	24,96	103,2	0,00	76,95	4,26	-3,00	0,00	0,00	78,21
36	2.213	2.215	23,65	103,2	0,00	77,91	4,61	-3,00	0,00	0,00	79,52
37	2.065	2.068	24,47	103,2	0,00	77,31	4,39	-3,00	0,00	0,00	78,70
38	2.336	2.338	23,01	103,2	0,00	78,38	4,79	-3,00	0,00	0,00	80,16
39	2.448	2.450	22,44	103,2	0,00	78,78		-3,00	0,00	0,00	80,73
40	2.960	2.961	22,22	106,7	0,00	80,43		-3,00	0,00	0,00	84,46
41	3.543	3.544	19,95	106,7	0,00	81,99		-3,00		0,00	86,73
42	3.319	3.319	20,78	106,7	0,00	81,42		-3,00	0,00	0,00	85,90
43	3.922	3.923	18,64	106,7	0,00	82,87		-3,00	0,00	0,00	88,04
44	3.423	3.424	20,39	106,7		81,69		-3,00	0,00	0,00	86,29
45	3.797	3.798	19,06	106,7	0,00	82,59		-3,00	0,00	0,00	87,62
46	4.127	4.129	20,58	106,7	0,00	83,32		-3,00	0,00	0,00	86,10
47	3.749	3.750	21,75	106,7	0,00	82,48		-3,00	0,00	0,00	84,93
48	5.715	5.715	13,68	106,7		86,14		-3,00		0,00	93,00
49	5.639	5.639	13,86	106,7	0,00	86,02		-3,00	0,00	0,00	92,82
50	5.632	5.632	13,88	106,7	0,00	86,01		-3,00	0,00	0,00	92,80
51	5.534	5.535	14,11	106,7	0,00	85,86		-3,00	0,00	0,00	92,57
52	6.013	6.013	13,00	106,7	0,00	86,58		-3,00	0,00	0,00	93,68
53	5.872	5.873	13,32	106,7	0,00	86,38		-3,00	0,00	0,00	93,36
WEC 01	1.234	1.244	33,92	108,9	0,00	72,90	5,11	-3,00	0,00	0,00	75,00
WEC 02	1.650	1.657	30,41	108,9	0,00	75,39		-3,00		0,00	78,51
WEC 03	1.892	1.898	28,71	108,9	0,00	76,57		-3,00	0,00	0,00	80,21
WEC 04	1.458	1.466	31,93	108,9	0,00	74,32		-3,00	0,00	0,00	77,00
WEC 05	1.015	1.028	34,04	106,6	0,00	71,24	4,31	-3,00	0,00	0,00	72,55
WEC 06	1.807	1.814	29,28	108,9	0,00	76,17		-3,00	0,00	0,00	79,64
WEC 07	1.374	1.382	30,53	106,6	0,00	73,81		-3,00	0,00	0,00	76,06
WEC 09	1.662	1.669	25,98	104,1	0,00	75,45		-3,00	0,00	0,00	78,08
WEC 10	2.170	2.175	24,91	106,6	0,00	77,75		-3,00	0,00	0,00	81,68
WEC 11	1.997	2.003	25,95	106,6	0,00	77,03		-3,00	0,00	0,00	80,64
WEC 12	1.911	1.917	20,78	100,1	0,00	76,65		-3,00	0,00	0,00	79,30
WEC 13	2.335	2.340	25,40	108,1	0,00	78,38	7,36	-3,00	0,00	0,00	82,75
Summe			44,76								

Schall-Immissionsort: R04 Rietz-Neuendorf, Kreuzberge 2

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Lautester Wert bis 95% Nennleistung WEA

VVLA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
13	4.879	4.882	17,78	108,1	0,00	84,77	8,55	-3,00	0,00	0,00	90,32
14	4.367	4.369	19,28	108,1	0,00	83,81	8,00	-3,00	0,00	0,00	88,81
15	4.384	4.387	19,23	108,1	0,00	83,84	8,02	-3,00	0,00	0,00	88,87
16	1.571	1.573	29,24	104,7	0,00	74,93	3,57	-3,00	0,00	0,00	75,50
17	1.473	1.475	29,97	104,7	0,00	74,38	3,40	-3,00	0,00	0,00	74,77
25	814	820	34,66	103,2	0,00	69,28	2,23	-3,00	0,00	0,00	68,51
26	582	590	38,02	103,2	0,00	66,42	1,73	-3,00	0,00	0,00	65,15
27	1.052	1.056	32,00	103,2	0,00	71,48	2,70	-3,00	0,00	0,00	71,17
28	1.267	1.271	30,00	103,2	0,00	73,08	3,09	-3,00	0,00	0,00	73,18
29	930	935	33,29	103,2	0,00	70,42	2,46	-3,00	0,00	0,00	69,88
30	659	666	36,81	103,2	0,00	67,46	1,90	-3,00	0,00	0,00	66,36
31	1.510	1.514	28,06	103,2	0,00	74,60	3,51	-3,00	0,00	0,00	75,11
32	1.134	1.138	31,20	103,2	0,00	72,12	2,85	-3,00	0,00	0,00	71,97
33	1.760	1.763	26,33	103,2	0,00	75,92	3,92	-3,00	0,00	0,00	76,84
34	882	887	33,85	103,2	0,00	69,96	2,36	-3,00	0,00	0,00	69,32
35	1.497	1.501	28,15	103,2	0,00	74,53	3,49	-3,00	0,00	0,00	75,02
36	1.872	1.874	25,62	103,2	0,00	76,46	4,10	-3,00	0,00	0,00	77,55
37	1.244	1.248	30,20	103,2	0,00	72,92	3,05	-3,00	0,00	0,00	72,97
38	1.802	1.805	26,05	103,2	0,00	76,13	3,99	-3,00	0,00	0,00	77,12
39	2.013	2.015	24,77	103,2	0,00	77,09	4,31	-3,00	0,00	0,00	78,40
40	3.651	3.652	19,56	106,7	0,00	82,25	7,87	-3,00	0,00	0,00	87,12

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

Jonas Feja / jonas.feja@ramboll.com

RAMBOLL

05.06.2020 09:28/3.3.289

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung WEASchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite) WEA

VVEA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
41	4.211	4.212	17,72	106,7	0,00	83,49	8,47	-3,00	0,00	0,00	88,96
42	3.934	3.935	18,60	106,7	0,00	82,90	8,18	-3,00	0,00	0,00	88,08
43	4.531	4.531	16,76	106,7	0,00	84,12	8,79	-3,00	0,00	0,00	89,92
44	3.943	3.945	18,57	106,7	0,00	82,92	8,19	-3,00	0,00	0,00	88,11
45	4.331	4.332	17,35	106,7	0,00	83,73	8,60	-3,00	0,00	0,00	89,33
46	4.609	4.610	19,22	106,7	0,00	84,27	6,18	-3,00	0,00	0,00	87,45
47	4.168	4.170	20,46	106,7	0,00	83,40	5,82	-3,00	0,00	0,00	86,22
48	5.607	5.608	13,94	106,7	0,00	85,98	9,77	-3,00	0,00	0,00	92,74
49	5.458	5.459	14,29	106,7	0,00	85,74	9,64	-3,00	0,00	0,00	92,38
50	5.362	5.362	14,53	106,7	0,00	85,59	9,56	-3,00	0,00	0,00	92,15
51	5.180	5.180	14,99	106,7	0,00	85,29	9,40	-3,00	0,00	0,00	91,69
52	5.765	5.765	13,56	106,7	0,00	86,22	9,90	-3,00	0,00	0,00	93,11
53	5.507	5.507	14,18	106,7	0,00	85,82	9,68	-3,00	0,00	0,00	92,50
WEC 01	1.690	1.697	30,11	108,9	0,00	75,60	6,21	-3,00	0,00	0,00	78,81
WEC 02	1.903	1.910	28,63	108,9	0,00	76,62	6,67	-3,00	0,00	0,00	80,29
WEC 03	1.911	1.917	28,58	108,9	0,00	76,65	6,69	-3,00	0,00	0,00	80,34
WEC 04	1.542	1.550	31,24	108,9	0,00	74,81	5,88	-3,00	0,00	0,00	77,69
WEC 05	1.193	1.204	32,18	106,6	0,00	72,61	4,80	-3,00	0,00	0,00	74,41
WEC 06	1.625	1.633	30,59	108,9	0,00	75,26	6,07	-3,00	0,00	0,00	78,33
WEC 07	1.170	1.180	32,42	106,6	0,00	72,44	4,73	-3,00	0,00	0,00	74,17
WEC 09	992	1.004	31,99	104,1	0,00	71,04	4,04	-3,00	0,00	0,00	72,07
WEC 10	1.500	1.508	29,48	106,6	0,00	74,57	5,55	-3,00	0,00	0,00	77,11
WEC 11	1.147	1.157	32,65	106,6	0,00	72,27	4,67	-3,00	0,00	0,00	73,94
WEC 12	849	863	30,02	100,1	0,00	69,72	3,35	-3,00	0,00	0,00	70,07
WEC 13	1.362	1.372	32,07	108,1	0,00	73,74	5,33	-3,00	0,00	0,00	76,07
Summe			46,48								

Projekt:

Beschreibung:

18-1-3048-003

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich Lizenzierter Anwender:
Ramboll GmbH
Stadtdeich 7
DE-20097 Hamburg
+49 40 302020-132
Jonas Feja / jonas.feja@ramboll.com
Berechnet:
05.06.2020 09:28/3.3.289

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung WEA

Schallberechnungs-Modell:

ISO 9613-2 Deutschland (Interimsverfahren) Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0 Meteorologischer Koeffizient, CO: 0,0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (z.B. DK, DE, SE, NL)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung

63 125 250 500 1.000 2.000 4.000 8 000 [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] 0,10 0,40 1,00 1,90 3,70 9,70 32,80 117,00

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O! Schall: Mode 0s - Lwa: 106,8 dB(A) + 2,1 dB(A) OVB

Datenquelle Quelle/Datum Quelle Bearbeitet
Hersteller D0921349-1 30.01.2020 USER 05.06.2020 09:25

Oktavbänder

Nabenhöhe Windgeschwindigkeit 1000 2000 4000 8000 Status LWA Einzelton 63 125 250 500 [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [m]166,0 95% der Nennleistung Von WEA-Katalog 108,9 Nein 89,3 94,8 97,3 100,7 103,6 104,5 97,7 77,8

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 104,5dB - Lwa: 104,5 dB(A) + 2,1 dB(A) OVB

Datenquelle Quelle/Datum Quelle Bearbeitet
Hersteller D0959532-0 30.01.2020 USER 18.05.2020 16:22

Oktavbänder Status Nabenhöhe Windgeschwindigkeit LWA Einzelton 63 125 25

 Status
 Nabenhöhe
 Windgeschwindigkeit
 LWA
 Einzelton
 63
 125
 250
 500
 1000
 2000
 4000
 8000

 Im
 [m/s]
 [dB(A)]
 [dB]
 [

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 102,0dB - Lwa: 102,0 dB(A) + 2,1 dB(A) OVB

Datenquelle Quelle/Datum Quelle Bearbeitet
Hersteller D0959532-0 30.01.2020 USER 19.05.2020 09:21

Oktavbänder

Status Nabenhöhe Windgeschwindigkeit 63 125 250 500 1000 2000 4000 8000 LWA Einzelton [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 95% der Nennleistung Von WEA-Katalog 166,0 104,1 Nein 85,0 90,5 93,3 96,7 98,7 99,1 92,2

Projekt:

18-1-3048-003

Beschreibung:

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich Ramboll GmbH Stadtdeich 7 DE-20097 Hambu

DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:28/3.3.289

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung WEA WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 98,0dB - Lwa: 98,0 dB(A) + 2,1 dB(A) OVB

Datenquelle Ouelle/Datum Quelle Bearbeitet
Hersteller D0959532-0 30.01.2020 USER 19.05.2020 09:34

Oktavbänder

 Status
 Nabenhöhe
 Windgeschwindigkeit
 LWA
 Einzelton
 63
 125
 250
 500
 1000
 2000
 4000
 8000

 [m]
 [m/s]
 [dB(A)]
 [dB]
 [dB]

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 106,0dB - Lwa: 106,0 dB(A) + 2,1 dB(A) OVB

Datenquelle Quelle/Datum Quelle Bearbeitet Hersteller D0959532-0 30.01.2020 USER 05.06.2020 09:24

Oktavbänder

Nabenhöhe Windgeschwindigkeit LWA Einzelton 125 250 500 1000 2000 4000 8000 Status 63 [dB(A)][dB] [dB] [dB] [dB] [dB] [dB] [dB] [m] [m/s] 166,0 95% der Nennleistung Von WEA-Katalog 108.1 Nein 88,6 94,1 96,7 100,2 102,8 103,6 96,8 76,9

WEA: ENERCON E-66/15.66 1500 66.0 !O!

Schall: Genehmigungspegel 102,0 dB(A) + 2,68 dB(A) SZ

Datenquelle Quelle/Datum Quelle Bearbeitet 01.04.2020 USER 01.04.2020 09:54

Oktavbänder

Windgeschwindigkeit LWA Einzelton 63 125 250 500 1000 2000 4000 8000 Status [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 95% der Nennleistung Von WEA-Katalog 90,1 93,6 96,5 99,5 99,7 Nein 95.2 85.9 104.7

WEA: REpower MD 70 1500 70.0 !-!

Schall: Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ

Datenquelle Quelle/Datum Quelle Bearbeitet 20.06.2018 USER 02.04.2020 22:34

Oktavbänder

 Status
 Windgeschwindigkeit [m/s]
 LWA Einzelton [dB(A)]
 63
 125
 250
 500
 1000
 2000
 4000
 8000

 Won WEA-Katalog
 95% der Nennleistung
 106,7
 Nein
 89,3
 94,7
 97,6
 99,2
 100,9
 100,5
 96,6
 87,6

WEA: REpower MD 77 1500 77.0 !-!

Schall: Genehmigungspegel 104,0 dB(A) + 2,68 dB(A) SZ

Datenquelle Quelle/Datum Quelle Bearbeitet

20.06.2018 USER 02.04.2020 22:35

Oktavbänder

Windgeschwindigkeit LWA Finzelton 1000 2000 4000 8000 Status 63 125 250 500 [m/s] [dB(A)][dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] Von WEA-Katalog 95% der Nennleistung Nein 90,8 98,9 99,9 100,5 99,6 96,9 93,2 86,6 106,7

WEA: VESTAS V80-2.0MW 2000 80.0 !O!

Schall: RS 101,7 dB(A) Genehmigungspegel + 1,49 dB(A) SZ

Datenquelle Quelle/Datum Quelle Bearbeitet 26.10.2017 USER 02.04.2020 22:32

Oktavbänder

 Status
 Windgeschwindigkeit [m/s]
 LWA [dB(A)]
 Einzelton [dB(A)]
 63 125 250 500 1000 2000 4000 8000
 1000 2000 4000 8000
 8000 8000 8000 8000

 Von WEA-Katalog
 95% der Nennleistung
 103,2 Nein
 84,6 91,7 96,3 98,0 96,8 94,5 88,8 76,7
 96,8 94,5 88,8 76,7

26605 Aurich

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

Jonas Feja / jonas.feja@ramboll.com

RAMBOLL

05.06.2020 09:28/3.3.289

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung WEA WEA: NORDEX N149/4.0-4.5 4500 149.0 !O! Schall: Genehmigungspegel 108,1 dB(A)

Datenquelle Quelle/Datum Quelle Bearbeitet

20.06.2018 USER 03.04.2020 11:39

Oktavbänder

Status Windgeschwindigkeit LWA Einzelton 63 125 250 500 1000 2000 4000 8000 [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB]

Von WEA-Katalog 95% der Nennleistung 90,2 96,4 99,6 102,3 103,1 100,7 88,9 65,7 108.1

Schall-Immissionsort: B01 Beeskow, Radinkendorf Ausbau 2

Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B02 Beeskow, Radinkendorf 33

Vordefinierter Berechnungsstandard: Dorf- und Mischgebiete Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B03 Beeskow, Radinkendorf 36

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B04 Beeskow, Radinkendorfer Straße 37

Vordefinierter Berechnungsstandard: Dorf- und Mischgebiete Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B05 Beeskow, Waldweg 2a Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B06 Beeskow, Schützenstraße 28 Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: R01 Reitz-Neuendorf, Schrödershof 2

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45.0 dB(A) Keine Abstandsanforderung

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com 05.06.2020 09:28/3.3.289

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung WEA

Schall-Immissionsort: R02 Reitz-Neuendorf, Feldweg 2

Vordefinierter Berechnungsstandard:

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 43,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: R03 Rietz-Neuendorf, Beeskower Chaussee 1

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: R04 Rietz-Neuendorf, Kreuzberge 2

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

	Tabelle Schalle	druckpegel Ac	ldition [Groß-F	Rietz]							
	Vorbelastung Gewerbe [dB(A)]	Vorbelastung WEA [dB(A)]	Zusatzbelastu ng WEA [dB(A)]	Gesamt- belastung [dB(A)]							
B04 31,1 33,2 36,6 39,0											
B05 32,2 32,9 35,7 38,6											
B06 26,4 31,9 26,9 33,9											

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Ramboll GmbH Stadtdeich 7

DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:33/3.3.289

RAMBOLL

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung Le, max ISO 9613-2 Deutschland (Interimsverfahren)

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, CO: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A) Reines Wohngebiet / Kurgebiet u.ä.: 35 dB(A)

Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Alle Koordinatenangaben in: UTM (north)-WGS84 Zone: 33

R01 WEC 01-C 03 R03 WEC 05 07 06 R07 WEWEC 11 WEC 12: 13 B04; BEESKOW

Maßstab 1:125.000 Schall-Immissionsort

WEA

					WEA	-Typ					Schall	lwerte			
	Ost	Nord	Z	Beschreibung	Ak-	Hersteller	Тур	Nenn-	Rotor-	Naben-	Quelle	Name	Windge-	LWA	Ein-
					tu-			leistung	durch-	höhe			schwin-		zel-
					ell				messer				digkeit		ton
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
WEC 01	447.766	5.785.579	55,3	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 1,7 dB(A) Lemax	(95%)	108,5	Nein
WEC 02	448.201	5.785.656	52,5	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 1,7 dB(A) Lemax	(95%)	108,5	Nein
WEC 03	448.539	5.785.463	53,1	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 1,7 dB(A) Lemax	(95%)	108,5	Nein
WEC 04	448.139	5.785.283	49,0	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 1,7 dB(A) Lemax	(95%)	108,5	Nein
WEC 05	447.732	5.785.075	56,4	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 1,7 dB(A) Lemax	(95%)	106,2	Nein
WEC 06	448.527	5.785.100	52,5	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 0s - Lwa: 106,8 dB(A) + 1,7 dB(A) Lemax	(95%)	108,5	Nein
WEC 07	448.103	5.784.864	47,5	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 1,7 dB(A) Lemax	(95%)	106,2	Nein
WEC 09	448.296	5.784.353	49,7	' ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 102,0dB - Lwa: 102,0 dB(A) + 1,7 dB(A) Lemax	(95%)	103,7	Nein
WEC 10	448.832	5.784.371	48,4	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 1,7 dB(A) Lemax	(95%)	106,2	Nein
WEC 11	448.538	5.784.060	50,0	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 104,5dB - Lwa: 104,5 dB(A) + 1,7 dB(A) Lemax	(95%)	106,2	Nein
WEC 12	448.219	5.783.711	48,8	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 98,0dB - Lwa: 98,0 dB(A) + 1,7 dB(A) Lemax	(95%)	99,7	Nein
WEC 13	448.747	5.783.733	50,0	ENERCON E-160 E.	Ja	ENERCON	E-160 EP5 E2-5.500	5.500	160,0	166,6	USER	Mode 106,0dB - Lwa: 106,0 dB(A) + 1,7 dB(A) Lemax	(95%)	107,7	Nein

Berechnungsergebnisse

Beurteilungspegel

Boan tonan gopogo.							
Schall-Immissionsort					Anforderung	Beurteilungspegel	Anforderung erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkt-	Schall	Von WEA	Schall
				höhe			
			[m]	[m]	[dB(A)]	[dB(A)]	
B01 Beeskow, Radinkendorf Ausbau 2	449.625	5.785.955	42,5	5,0	45,0	39,7	Ja
B02 Beeskow, Radinkendorf 33	449.911	5.784.952	42,5	5,0	45,0	39,5	Ja
B03 Beeskow, Radinkendorf 36	449.916	5.784.646	42,5	5,0	40,0	39,6	Ja
B04 Beeskow, Radinkendorfer Straße 37	449.338	5.782.577	43,5	5,0	45,0	36,2	Ja
B05 Beeskow, Waldweg 2a	449.396	5.782.461	43,0	5,0	40,0	35,3	Ja
B06 Beeskow, Schützenstraße 28	448.137	5.780.307	42,5	5,0	35,0	26,5	Ja
R01 Reitz-Neuendorf, Schrödershof 2	447.397	5.787.167	57,2	5,0	45,0	36,3	Ja
R02 Reitz-Neuendorf, Feldweg 2	446.025	5.785.719	65,0	5,0	43,0	35,4	Ja
R03 Rietz-Neuendorf, Beeskower Chaussee	1 446.730	5.784.909	57,5	5,0	45,0	40,4	Ja
R04 Rietz-Neuendorf, Kreuzberge 2	447.399	5.783.930	54,5	5,0	45,0	41,4	Ja

Abstände (m)

WEA	B01	B02	B03	B04	B05	B06	R01	R02	R03	R04
WEC 01	1897	2235	2344	3388	3519	5285	1630	1746	1234	1690
WEC 02	1455	1849	1990	3282	3411	5350	1712	2177	1650	1903
WEC 03	1193	1464	1601	2994	3122	5172	2052	2527	1892	1911
WEC 04	1631	1803	1888	2959	3089	4976	2025	2158	1458	1542
WEC 05	2088	2183	2226	2969	3099	4786	2119	1824	1015	1193
WEC 06	1392	1392	1461	2650	2779	4809	2356	2577	1807	1625
WEC 07	1873	1810	1826	2599	2729	4558	2409	2247	1374	1170
WEC 09	2082	1723	1646	2059	2189	4050	2954	2650	1662	992
WEC 10	1772	1226	1118	1864	1992	4123	3143	3114	2170	1500

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree, Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung Le, max

...(Fortsetzung von letzter Seite)
WEA B01 B02 B03 B04 B05 B06 R01 R02 R03 R04 WEC 11 2185 1638 1497 1685 1815 3775 3310 3011 1997 1147 WEC 12 2648 2099 1937 1593 1717 3405 3553 2974 1911 849 WEC 13 2389 1686 1483 1298 1428 3480 3690 3369 2335 1362

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com 05.06.2020 09:33/3.3.289

ojekt: Beschreibung:

18-1-3048 Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich Lizenzierter Anwender: Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com Berechnet: 05.06.2020 09:33/3.3.289 RAMBOLL

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Le,maxSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist <math>Dc = Domega)

LWA,ref: Schallleistungspegel der WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Dämpfung aufgrund von Luftabsorption
Agr: Dämpfung aufgrund des Bodeneffekts
Abar: Dämpfung aufgrund von Abschirmung

Amisc: Dämpfung aufgrund verschiedener anderer Effekte

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: B01 Beeskow, Radinkendorf Ausbau 2

Lautester Wert bis 95% Nennleistung

WEA

Nr. Abstand Schallweg Berechnet LWA Dc Adiv Aatm Agr Abar Amisc

Abstand	Schallweg	Berechnet	LWA	DC	Adıv	Aatm	Agr	Abar	Amisc	Α
[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.897	1.905	28,27	108,5	0,00	76,60	6,66	-3,00	0,00	0,00	80,26
1.455	1.465	31,53	108,5	0,00	74,32	5,67	-3,00	0,00	0,00	76,99
1.193	1.205	33,90	108,5	0,00	72,62	5,00	-3,00	0,00	0,00	74,62
1.631	1.640	30,14	108,5	0,00	75,30	6,08	-3,00	0,00	0,00	78,38
2.088	2.095	24,98	106,2	0,00	77,42	6,78	-3,00	0,00	0,00	81,21
1.392	1.402	32,07	108,5	0,00	73,94	5,52	-3,00	0,00	0,00	76,46
1.873	1.880	26,35	106,2	0,00	76,48	6,36	-3,00	0,00	0,00	79,84
2.082	2.089	22,80	103,7	0,00	77,40	6,46	-3,00	0,00	0,00	80,86
1.772	1.780	27,03	106,2	0,00	76,01	6,15	-3,00	0,00	0,00	79,16
2.185	2.191	24,41	106,2	0,00	77,81	6,96	-3,00	0,00	0,00	81,78
2.648	2.654	16,35	99,7	0,00	79,48	6,86	-3,00	0,00	0,00	83,33
2.389	2.395	24,69	107,7	0,00	78,59	7,46	-3,00	0,00	0,00	83,05
		39,66								
	[m] 1.897 1.455 1.193 1.631 2.088 1.392 1.873 2.082 1.772 2.185 2.648	[m] [m] 1.897 1.905 1.455 1.465 1.193 1.205 1.631 1.640 2.088 2.095 1.392 1.402 1.873 1.880 2.082 2.089 1.772 1.780 2.185 2.191 2.648 2.654	[m] [m] [dB(A)] 1.897 1.905 28,27 1.455 1.465 31,53 1.193 1.205 33,90 1.631 1.640 30,14 2.088 2.095 24,98 1.392 1.402 32,07 1.873 1.880 26,35 2.082 2.089 22,80 1.772 1.780 27,03 2.185 2.191 24,41 2.648 2.654 16,35 2.389 2.395 24,69	[m] [m] [dB(A)] [dB(A)] 1.897 1.905 28,27 108,5 1.455 1.465 31,53 108,5 1.193 1.205 33,90 108,5 1.631 1.640 30,14 108,5 2.088 2.095 24,98 106,2 1.392 1.402 32,07 108,5 1.873 1.880 26,35 106,2 2.082 2.089 22,80 103,7 1.772 1.780 27,03 106,2 2.185 2.191 24,41 106,2 2.648 2.654 16,35 99,7 2.389 2.395 24,69 107,7	[m] [m] [dB(A)] [dB(A)	[m] [m] [dB(A)] [dB(A)] [dB] [dB] 1.897	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 1.897	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] 1.897 1.905 28,27 108,5 0,00 76,60 6,66 -3,00 1.455 1.465 31,53 108,5 0,00 74,32 5,67 -3,00 1.193 1.205 33,90 108,5 0,00 72,62 5,00 -3,00 1.631 1.640 30,14 108,5 0,00 75,30 6,08 -3,00 2.088 2.095 24,98 106,2 0,00 77,42 6,78 -3,00 1.873 1.880 26,35 106,2 0,00 73,94 5,52 -3,00 1.873 1.880 26,35 106,2 0,00 76,48 6,36 -3,00 2.082 2.089 22,80 103,7 0,00 76,01 6,15 -3,00 1.772 1.780 27,03 106,2 0,00 76,01 6,15 -3,00 2.185	[m] [m] [dB(A)] [dB(A)] [dB] [dB]	[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.897 1.905 28,27 108,5 0,00 76,60 6,66 -3,00 0,00 0,00 0,00 1.455 1.465 31,53 108,5 0,00 74,32 5,67 -3,00 0,00 0,00 1.193 1.205 33,90 108,5 0,00 72,62 5,00 -3,00 0,00 0,00 1.631 1.640 30,14 108,5 0,00 75,30 6,08 -3,00 0,00 0,00 2.088 2.095 24,98 106,2 0,00 77,42 6,78 -3,00 0,00 0,00 1.372 1.402 32,07 108,5 0,00 73,94 5,52 -3,00 0,00 0,00 1.873 1.880 26,35 106,2 0,00 76,48 6,36 -3,00 0,00 0,00 2.082 2.089 22,80 103,7 0,00 77,40 6,46 -3,00 0,00 0,00 1.772 1.780 27,03 106,2 0,00 76,01 6,15 -3,00 0,00 0,00 2.185 2.191 24,41 106,2 0,00 76,01 6,15 -3,00 0,00 0,00 2.648 2.654 16,35 99,7 0,00 79,48 6,86 -3,00 0,00 0,00 2.389 2.395 24,69 107,7 0,00 78,59 7,46 -3,00 0,00 0,00

Schall-Immissionsort: B02 Beeskow, Radinkendorf 33

Lautester Wert bis 95% Nennleistung

WEA
Nr. Abstand Schallweg Berecl

INF.	Abstand	Schallweg	Berechnet	LVVA	DC	Adiv	Aatm	Agr	Abar	AMISC	А
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	2.235	2.242	26,19	108,5	0,00	78,01	7,32	-3,00	0,00	0,00	82,33
WEC 02	1.849	1.857	28,59	108,5	0,00	76,38	6,56	-3,00	0,00	0,00	79,94
WEC 03	1.464	1.474	31,45	108,5	0,00	74,37	5,70	-3,00	0,00	0,00	77,07
WEC 04	1.803	1.811	28,90	108,5	0,00	76,16	6,46	-3,00	0,00	0,00	79,62
WEC 05	2.183	2.190	24,42	106,2	0,00	77,81	6,96	-3,00	0,00	0,00	81,77
WEC 06	1.392	1.403	32,06	108,5	0,00	73,94	5,52	-3,00	0,00	0,00	76,46
WEC 07	1.810	1.818	26,77	106,2	0,00	76,19	6,23	-3,00	0,00	0,00	79,42
WEC 09	1.723	1.731	25,13	103,7	0,00	75,77	5,76	-3,00	0,00	0,00	78,53
WEC 10	1.226	1.237	31,46	106,2	0,00	72,85	4,88	-3,00	0,00	0,00	74,73
WEC 11	1.638	1.646	28,00	106,2	0,00	75,33	5,86	-3,00	0,00	0,00	78,19
WEC 12	2.099	2.105	19,23	99,7	0,00	77,47	5,98	-3,00	0,00	0,00	80,45
WEC 13	1.686	1.694	29,08	107,7	0,00	75,58	6,08	-3,00	0,00	0,00	78,66
Summe			39,50								

Schall-Immissionsort: B03 Beeskow, Radinkendorf 36

Lautester Wert bis 95% Nennleistung

WEA

** - / *											
Nr.	Abstand So	challweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	2.344	2.350	25,58	108,5	0,00	78,42	7,52	-3,00	0,00	0,00	82,94
WEC 02	1.990	1.998	27,66	108,5	0,00	77,01	6,85	-3,00	0,00	0,00	80,86
WEC 03	1.601	1.610	30,37	108,5	0,00	75,14	6,02	-3,00	0,00	0,00	78,16
WEC 04	1.888	1.895	28,33	108,5	0,00	76,55	6,64	-3,00	0,00	0,00	80,19
WEC 05	2.226	2.233	24,17	106,2	0,00	77,98	7,04	-3,00	0,00	0,00	82,02
				/	. ,	- ,	. ,	- ,	. ,	.,	

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

Jonas Feja / jonas.feja@ramboll.com 05.06.2020 09:33/3.3.289

RAMBOLL

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Le,maxSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite) WEA

VVLA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEC 06	1.461	1.471	31,48	108,5	0,00	74,35	5,69	-3,00	0,00	0,00	77,04	
WEC 07	1.826	1.834	26,66	106,2	0,00	76,27	6,26	-3,00	0,00	0,00	79,53	
WEC 09	1.646	1.655	25,68	103,7	0,00	75,38	5,60	-3,00	0,00	0,00	77,98	
WEC 10	1.118	1.131	32,52	106,2	0,00	72,07	4,60	-3,00	0,00	0,00	73,67	
WEC 11	1.497	1.507	29,08	106,2	0,00	74,56	5,55	-3,00	0,00	0,00	77,11	
WEC 12	1.937	1.945	20,20	99,7	0,00	76,78	5,70	-3,00	0,00	0,00	79,48	
WEC 13	1.483	1.493	30,64	107,7	0,00	74,48	5,63	-3,00	0,00	0,00	77,10	
Summe			39,58									

Schall-Immissionsort: B04 Beeskow, Radinkendorfer Straße 37

Lautester Wert bis 95% Nennleistung

WEA

Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	3.388	3.393	20,72	108,5	0,00	81,61	9,19	-3,00	0,00	0,00	87,80
WEC 02	3.282	3.286	21,15	108,5	0,00	81,33	9,04	-3,00	0,00	0,00	87,37
WEC 03	2.994	2.999	22,38	108,5	0,00	80,54	8,61	-3,00	0,00	0,00	86,15
WEC 04	2.959	2.964	22,53	108,5	0,00	80,44	8,55	-3,00	0,00	0,00	85,99
WEC 05	2.969	2.974	20,44	106,2	0,00	80,47	8,28	-3,00	0,00	0,00	85,75
WEC 06	2.650	2.655	23,99	108,5	0,00	79,48	8,05	-3,00	0,00	0,00	84,54
WEC 07	2.599	2.604	22,19	106,2	0,00	79,31	7,69	-3,00	0,00	0,00	84,00
WEC 09	2.059	2.066	22,94	103,7	0,00	77,30	6,42	-3,00	0,00	0,00	80,72
WEC 10	1.864	1.871	26,41	106,2	0,00	76,44	6,34	-3,00	0,00	0,00	79,78
WEC 11	1.685	1.693	27,65	106,2	0,00	75,57	5,96	-3,00	0,00	0,00	78,54
WEC 12	1.593	1.601	22,54	99,7	0,00	75,09	5,06	-3,00	0,00	0,00	77,15
WEC 13	1.298	1.309	32,24	107,7	0,00	73,34	5,17	-3,00	0,00	0,00	75,51
Summe			36,23								

Schall-Immissionsort: B05 Beeskow, Waldweg 2a

Lautester Wert bis 95% Nennleistung

\//FA

VVLA											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	3.519	3.523	20,21	108,5	0,00	81,94	9,37	-3,00	0,00	0,00	88,31
WEC 02	3.411	3.416	20,63	108,5	0,00	81,67	9,22	-3,00	0,00	0,00	87,89
WEC 03	3.122	3.127	21,82	108,5	0,00	80,90	8,80	-3,00	0,00	0,00	86,70
WEC 04	3.089	3.094	21,96	108,5	0,00	80,81	8,75	-3,00	0,00	0,00	86,56
WEC 05	3.099	3.104	19,87	106,2	0,00	80,84	8,48	-3,00	0,00	0,00	86,32
WEC 06	2.779	2.784	23,36	108,5	0,00	79,89	8,27	-3,00	0,00	0,00	85,16
WEC 07	2.729	2.734	21,55	106,2	0,00	79,74	7,91	-3,00	0,00	0,00	84,64
WEC 09	2.189	2.195	22,17	103,7	0,00	77,83	6,66	-3,00	0,00	0,00	81,49
WEC 10	1.992	1.999	25,58	106,2	0,00	77,01	6,60	-3,00	0,00	0,00	80,61
WEC 11	1.815	1.823	26,74	106,2	0,00	76,21	6,24	-3,00	0,00	0,00	79,45
WEC 12	1.717	1.725	21,65	99,7	0,00	75,74	5,30	-3,00	0,00	0,00	78,03
WEC 13	1.428	1.438	31,10	107,7	0,00	74,16	5,49	-3,00	0,00	0,00	76,65
Summe			35,34								

Schall-Immissionsort: B06 Beeskow, Schützenstraße 28

Lautester Wert bis 95% Nennleistung

WEA

					_						
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	5.285	5.288	14,63	108,5	0,00	85,47	11,43	-3,00	0,00	0,00	93,90
WEC 02	5.350	5.353	14,46	108,5	0,00	85,57	11,49	-3,00	0,00	0,00	94,06
WEC 03	5.172	5.175	14,93	108,5	0,00	85,28	11,32	-3,00	0,00	0,00	93,60
WEC 04	4.976	4.979	15,46	108,5	0,00	84,94	11,12	-3,00	0,00	0,00	93,06
WEC 05	4.786	4.789	13,97	106,2	0,00	84,60	10,62	-3,00	0,00	0,00	92,22
WEC 06	4.809	4.812	15,94	108,5	0,00	84,65	10,94	-3,00	0,00	0,00	92,59
WEC 07	4.558	4.561	14,64	106,2	0,00	84,18	10,37	-3,00	0,00	0,00	91,55
WEC 09	4.050	4.053	14,11	103,7	0,00	83,16	9,39	-3,00	0,00	0,00	89,55
WEC 10	4.123	4.127	16,02	106,2	0,00	83,31	9,86	-3,00	0,00	0,00	90,17
WEC 11	3.775	3.779	17,22	106,2	0,00	82,55	9,42	-3,00	0,00	0,00	88,97
WEC 12	3.405	3.410	13,13	99,7	0,00	81,65	7,90	-3,00	0,00	0,00	86,55
WEC 13	3.480	3.484	19,73	107,7	0,00	81,84	9,17	-3,00	0,00	0,00	88,01
Summe			26,53								

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:33/3.3.289

RAMBOLL

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Le, maxSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s Schall-Immissionsort: R01 Reitz-Neuendorf, Schrödershof 2

Lautester Wert bis 95% Nennleistung

WEA

Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	1.630	1.638	30,15	108,5	0,00	75,29	6,08	-3,00	0,00	0,00	78,37
WEC 02	1.712	1.719	29,56	108,5	0,00	75,71	6,26	-3,00	0,00	0,00	78,97
WEC 03	2.052	2.058	27,29	108,5	0,00	77,27	6,97	-3,00	0,00	0,00	81,24
WEC 04	2.025	2.031	27,45	108,5	0,00	77,15	6,92	-3,00	0,00	0,00	81,07
WEC 05	2.119	2.125	24,81	106,2	0,00	77,55	6,84	-3,00	0,00	0,00	81,39
WEC 06	2.356	2.361	25,52	108,5	0,00	78,46	7,54	-3,00	0,00	0,00	83,00
WEC 07	2.409	2.414	23,17	106,2	0,00	78,65	7,37	-3,00	0,00	0,00	83,02
WEC 09	2.954	2.958	18,33	103,7	0,00	80,42	7,91	-3,00	0,00	0,00	85,33
WEC 10	3.143	3.147	19,69	106,2	0,00	80,96	8,54	-3,00	0,00	0,00	86,50
WEC 11	3.310	3.314	19,00	106,2	0,00	81,41	8,79	-3,00	0,00	0,00	87,19
WEC 12	3.553	3.556	12,58	99,7	0,00	82,02	8,08	-3,00	0,00	0,00	87,10
WEC 13	3.690	3.693	18,94	107,7	0,00	82,35	9,45	-3,00	0,00	0,00	88,80
Summe			36,27								

Schall-Immissionsort: R02 Reitz-Neuendorf, Feldweg 2

Lautester Wert bis 95% Nennleistung

WEA

VVEA												
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEC 01	1.746	1.753	29,31	108,5	0,00	75,87	6,34	-3,00	0,00	0,00	79,21	
WEC 02	2.177	2.182	26,54	108,5	0,00	77,78	7,21	-3,00	0,00	0,00	81,98	
WEC 03	2.527	2.531	24,61	108,5	0,00	79,07	7,84	-3,00	0,00	0,00	83,91	
WEC 04	2.158	2.163	26,65	108,5	0,00	77,70	7,17	-3,00	0,00	0,00	81,87	
WEC 05	1.824	1.831	26,68	106,2	0,00	76,25	6,26	-3,00	0,00	0,00	79,51	
WEC 06	2.577	2.581	24,36	108,5	0,00	79,24	7,93	-3,00	0,00	0,00	84,17	
WEC 07	2.247	2.251	24,07	106,2	0,00	78,05	7,07	-3,00	0,00	0,00	82,12	
WEC 09	2.650	2.654	19,74	103,7	0,00	79,48	7,44	-3,00	0,00	0,00	83,92	
WEC 10	3.114	3.117	19,81	106,2	0,00	80,88	8,50	-3,00	0,00	0,00	86,38	
WEC 11	3.011	3.015	20,26	106,2	0,00	80,58	8,35	-3,00	0,00	0,00	85,93	
WEC 12	2.974	2.978	14,88	99,7	0,00	80,48	7,32	-3,00	0,00	0,00	84,80	
WEC 13	3.369	3.373	20,17	107,7	0,00	81,56	9,01	-3,00	0,00	0,00	87,57	
Summe			35,42									

Schall-Immissionsort: R03 Rietz-Neuendorf, Beeskower Chaussee 1

Lautester Wert bis 95% Nennleistung WEA

V V L /\											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	1.234	1.244	33,52	108,5	0,00	72,90	5,11	-3,00	0,00	0,00	75,00
WEC 02	1.650	1.657	30,01	108,5	0,00	75,39	6,12	-3,00	0,00	0,00	78,51
WEC 03	1.892	1.898	28,31	108,5	0,00	76,57	6,65	-3,00	0,00	0,00	80,21
WEC 04	1.458	1.466	31,53	108,5	0,00	74,32	5,68	-3,00	0,00	0,00	77,00
WEC 05	1.015	1.028	33,64	106,2	0,00	71,24	4,31	-3,00	0,00	0,00	72,55
WEC 06	1.807	1.814	28,88	108,5	0,00	76,17	6,47	-3,00	0,00	0,00	79,64
WEC 07	1.374	1.382	30,13	106,2	0,00	73,81	5,25	-3,00	0,00	0,00	76,06
WEC 09	1.662	1.669	25,58	103,7	0,00	75,45	5,63	-3,00	0,00	0,00	78,08
WEC 10	2.170	2.175	24,51	106,2	0,00	77,75	6,93	-3,00	0,00	0,00	81,68
WEC 11	1.997	2.003	25,55	106,2	0,00	77,03	6,60	-3,00	0,00	0,00	80,64
WEC 12	1.911	1.917	20,38	99,7	0,00	76,65	5,65	-3,00	0,00	0,00	79,30
WEC 13	2.335	2.340	25,00	107,7	0,00	78,38	7,36	-3,00	0,00	0,00	82,75
Summe			40,37								

Schall-Immissionsort: R04 Rietz-Neuendorf, Kreuzberge 2

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Lautester Wert bis 95% Nennleistung

V V L / \											
Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 01	1.690	1.697	29,71	108,5	0,00	75,60	6,21	-3,00	0,00	0,00	78,81
WEC 02	1.903	1.910	28,23	108,5	0,00	76,62	6,67	-3,00	0,00	0,00	80,29
WEC 03	1.911	1.917	28,18	108,5	0,00	76,65	6,69	-3,00	0,00	0,00	80,34
WEC 04	1.542	1.550	30,84	108,5	0,00	74,81	5,88	-3,00	0,00	0,00	77,69
WEC 05	1.193	1.204	31,78	106,2	0,00	72,61	4,80	-3,00	0,00	0,00	74,41

Projekt:

Beschreibung

18-1-3048

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich Lizenzierter Anwender: Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132

Jonas Feja / jonas.feja@ramboll.com Berechnet: 05.06.2020 09:33/3.3.289

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Le,maxSchallberechnungs-Modell: ISO 9613-2 Deutschland (Interimsverfahren) 10,0 m/s ...(Fortsetzung von letzter Seite)

WEA	
-----	--

Nr.	Abstand	Schallweg	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
	[m]	[m]	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEC 06	1.625	1.633	30,19	108,5	0,00	75,26	6,07	-3,00	0,00	0,00	78,33
WEC 07	1.170	1.180	32,02	106,2	0,00	72,44	4,73	-3,00	0,00	0,00	74,17
WEC 09	992	1.004	31,59	103,7	0,00	71,04	4,04	-3,00	0,00	0,00	72,07
WEC 10	1.500	1.508	29,08	106,2	0,00	74,57	5,55	-3,00	0,00	0,00	77,11
WEC 11	1.147	1.157	32,25	106,2	0,00	72,27	4,67	-3,00	0,00	0,00	73,94
WEC 12	849	863	29,62	99,7	0,00	69,72	3,35	-3,00	0,00	0,00	70,07
WEC 13	1.362	1.372	31,67	107,7	0,00	73,74	5,33	-3,00	0,00	0,00	76,07
Summe			41,44								

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:33/3.3.289

DECIBEL - Annahmen für Schallberechnung

Berechnung: Zusatzbelastung Le, max

Schallberechnungs-Modell:

ISO 9613-2 Deutschland (Interimsverfahren) Windgeschwindigkeit (in 10 m Höhe): Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Feste Werte, Agr: -3,0, Dc: 0,0 Meteorologischer Koeffizient, CO: 0,0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (z.B. DK, DE, SE, NL)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Fester Zuschlag wird zu Schallemission von WEA mit Einzeltönen zugefügt

WEA-Katalog

Aufpunkthöhe ü.Gr.:

5,0 m; Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

Unsicherheitszuschlag:

0,0 dB; Unsicherheitszuschlag des IP hat Priorität

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Oktavbanddaten verwendet

Frequenzabhängige Luftdämpfung

63 125 250 500 1.000 2.000 4.000 8 000 [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] [dB/km] 0,10 0,40 1,00 1,90 3,70 9,70 32,80 117,00

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O! Schall: Mode 0s - Lwa: 106,8 dB(A) + 1,7 dB(A) Lemax

Quelle/Datum Quelle Bearbeitet Datenguelle Hersteller D0921349-1 30.01.2020 USER 29.05.2020 14:13

Oktavbänder

Nabenhöhe Windgeschwindigkeit 1000 2000 4000 8000 Status LWA Einzelton 63 125 250 500 [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [m]166,0 95% der Nennleistung Von WEA-Katalog 108,5 Nein 88,9 94,4 96,9 100,3 103,2 104,1 97,3 77,4

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 104,5dB - Lwa: 104,5 dB(A) + 1,7 dB(A) Lemax

Quelle/Datum Quelle Bearbeitet Datenguelle Hersteller D0959532-0 30.01.2020 USER 18.05.2020 16:22

Oktavbänder Status Nabenhöhe Windgeschwindigkeit LWA Einzelton

63 125 250 500 1000 2000 4000 8000 [m] [m/s] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 166,0 95% der Nennleistung Von WEA-Katalog 86,8 92,3 94,9 98,4 100,9 101,5 94,7 106.2 Nein 74.8

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 102,0dB - Lwa: 102,0 dB(A) + 1,7 dB(A) Lemax

Quelle/Datum Quelle Bearbeitet Hersteller D0959532-0 30.01.2020 USER 19.05.2020 09:21

Oktavbänder

Status Nabenhöhe Windgeschwindigkeit 63 125 250 500 1000 2000 4000 8000 LWA Einzelton [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 95% der Nennleistung Von WEA-Katalog 166,0 103,7 Nein 84,6 90,1 92,9 96,3 98,3 98,7 91,8

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

RAMBOLL

05.06.2020 09:33/3.3.289

DECIBEL - Annahmen für Schallberechnung

Berechnung: Zusatzbelastung Le, max WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 98,0dB - Lwa: 98,0 dB(A) + 1,7 dB(A) Lemax

Quelle/Datum Quelle Bearbeitet Hersteller D0959532-0 30.01.2020 USER 19.05.2020 09:35

Oktavbänder

Nabenhöhe Status Windgeschwindigkeit LWA Einzelton 63 125 250 500 1000 2000 4000 8000 [m/s][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] Von WEA-Katalog 166,0 95% der Nennleistung Nein 81,7 87,1 89,8 92,7 94,1 94,3 87,4

WEA: ENERCON E-160 EP5 E2 5500 160.0 !O!

Schall: Mode 106,0dB - Lwa: 106,0 dB(A) + 1,7 dB(A) Lemax

Quelle/Datum Quelle Bearbeitet Datenguelle Hersteller D0959532-0 30.01.2020 USER 05.06.2020 09:24

Oktavbänder

Status Nabenhöhe Windgeschwindigkeit LWA Einzelton 125 250 500 1000 2000 4000 8000 63 [dB] [dB] [dB] [dB] [dB] [dB] [dB] [m/s] [m] [dB(A)] 166,0 95% der Nennleistung Von WEA-Katalog 107.7 Nein 88,2 93,7 96,3 99,8 102,4 103,2 96,4 76,5

Schall-Immissionsort: B01 Beeskow, Radinkendorf Ausbau 2

Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B02 Beeskow, Radinkendorf 33

Vordefinierter Berechnungsstandard: Dorf- und Mischgebiete Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B03 Beeskow, Radinkendorf 36

Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B04 Beeskow, Radinkendorfer Straße 37

Vordefinierter Berechnungsstandard: Dorf- und Mischgebiete Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B05 Beeskow, Waldweg 2a Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: B06 Beeskow, Schützenstraße 28 Vordefinierter Berechnungsstandard: Reines Wohngebiet / Kurgebiet

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

windPRO 3.3.289 | EMD International A/S, Tel. +45 96 35 44 44, www.emd.dk, windpro@emd.dk

Schallrichtwert: 35,0 dB(A) Keine Abstandsanforderung

Windpark Beeskow-Groß Rietz, Landkreis Oder-Spree,

Brandenburg

Enercon IPP GmbH Dreekamp 5 26605 Aurich

Ramboll GmbH Stadtdeich 7 DE-20097 Hamburg +49 40 302020-132 Jonas Feja / jonas.feja@ramboll.com

05.06.2020 09:33/3.3.289

RAMBOLL

DECIBEL - Annahmen für Schallberechnung

Berechnung: Zusatzbelastung Le, max

Schall-Immissionsort: R01 Reitz-Neuendorf, Schrödershof 2

Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: R02 Reitz-Neuendorf, Feldweg 2

Vordefinierter Berechnungsstandard:

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 43,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: R03 Rietz-Neuendorf, Beeskower Chaussee 1

Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

Schall-Immissionsort: R04 Rietz-Neuendorf, Kreuzberge 2

Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells Unsicherheitszuschlag: Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Keine Abstandsanforderung

3.2 Berechnete Schallleistungspegel Betriebsmodus 0 s

Im Betriebsmodus 0 s wird die Windenergieanlage leistungsoptimiert mit optimaler Ertragsausbeute betrieben. Der höchste zu erwartende Schallleistungspegel liegt bei 106,8 dB(A) im Bereich der Nennleistung. Nach Erreichen der Nennleistung steigt der Schallleistungspegel nicht weiter an.

Tab. 4: Technische Daten

Parameter	Wert	Einheit
Nennleistung (P _n)	5500	kW
Nennwindgeschwindigkeit	12,9	m/s
minimale Betriebsdrehzahl	2,8	U/min
Solldrehzahl	9,4	U/min

Folgende Schallleistungspegel gelten unter Berücksichtigung der in Kap. 2, S. 9 aufgeführten Unsicherheiten.

Tab. 5: Berechneter Schallleistungspegel in dB(A) bezogen auf die standardisierte Windgeschwindigkeit $v_{\rm s}$ in 10 m Höhe

Windge-	Sc	hallleistungspegel in dB	(A)	
schwindig- keit (v _s) in 10 m Höhe	E-160 EP5 E2- MST-120-FB-C-01	E-160 EP5 E2- MST-140-FB-C-01	E-160 EP5 E2- MST-166-FB-C-01	
3 m/s	94,0	94,5	95,0	
3,5 m/s	97,9	98,3	98,7	
4 m/s	100,7	101,2	101,6	
4,5 m/s	103,2	103,6	104,1	
5 m/s	105,4	105,9	106,2	
5,5 m/s	106,7	106,7	106,8	
6 m/s	106,8	106,8	106,8	
6,5 m/s	106,8	106,8	106,8	
7 m/s	106,8	106,8	106,8	
7,5 m/s	106,8	106,8	106,8	
8 m/s	106,8	106,8	106,8	
8,5 m/s	106,8	106,8	106,8	
9 m/s	106,8	106,8	106,8	
9,5 m/s	106,8	106,8	106,8	
10 m/s	106,8	106,8	106,8	
10,5 m/s	106,8	106,8	106,8	
11 m/s	106,8	106,8	106,8	
11,5 m/s	106,8	106,8	106,8	
12 m/s	106,8	106,8	106,8	
95 % P _n	106,8	106,8	106,8	

Tab. 6: Berechneter Schallleistungspegel in dB(A) bezogen auf die Windgeschwindigkeit in Nabenhöhe

Windgeschwindigkeit in Nabenhöhe (v _H)	Schallleistungspegel in dB(A)
5 m/s	97,3
5,5 m/s	99,3
6 m/s	101,2
6,5 m/s	102,9
7 m/s	104,4
7,5 m/s	105,9
8 m/s	106,7
8,5 m/s	106,8
9 m/s	106,8
9,5 m/s	106,8
10 m/s	106,8
10,5 m/s	106,8
11 m/s	106,8
11,5 m/s	106,8
12 m/s	106,8
12,5 m/s	106,8
13 m/s	106,8
13,5 m/s	106,8
14 m/s	106,8
14,5 m/s	106,8
15 m/s	106,8

3.3 Oktavbandpegel des lautesten Zustands

3.3.1 Oktavbandpegel NH

Tab. 7: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit v_H in Nabenhöhe

v _H in m/s	Oktavb	Oktavbandmittenfrequenz in Hz								
31,5 63 125 250 500 1000 2000 4000									8000	
8,5	74,9	86,7	92,3	94,8	98,4	101,3	102,5	96,5	79,2	

3.3.2 Oktavbandpegel E-160 EP5 E2-MST-120-FB-C-01

Tab. 8: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit $v_{\rm s}$ in 10 m Höhe

•		Oktavbandmittenfrequenz in Hz								
Höhe in m/s	31,5	63	125	250	500	1000	2000	4000	8000	
6	74,9	86,7	92,3	94,8	98,4	101,3	102,5	96,5	79,2	

3.3.3 Oktavbandpegel E-160 EP5 E2-MST-140-FB-C-01

Tab. 9: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

v _s in 10 m Höhe in m/s		Oktavbandmittenfrequenz in Hz								
	31,5	63	125	250	500	1000	2000	4000	8000	
6	75,1	86,9	92,5	95,0	98,5	101,4	102,4	96,0	77,6	

3.3.4 Oktavbandpegel E-160 EP5 E2-MST-166-FB-C-01

Tab. 10: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit $\nu_{\rm s}$ in 10 m Höhe

v _s in 10 m Höhe in m/s		Oktavbandmittenfrequenz in Hz								
	31,5	63	125	250	500	1000	2000	4000	8000	
5,5	75,4	87,2	92,7	95,2	98,6	101,5	102,4	95,6	75,7	

3.2 Berechnete Schallleistungspegel Betriebsmodus 106,0 dB

Im Betriebsmodus 106,0 dB wird die Windenergieanlage leistungsoptimiert betrieben. Der höchste zu erwartende Schallleistungspegel liegt bei 106,0 dB(A) im Bereich der Nennleistung. Nach Erreichen der Nennleistung steigt der Schallleistungspegel nicht weiter an.

Tab. 4: Technische Daten

Parameter	Wert	Einheit
Nennleistung (P _n)	5284	kW
Nennwindgeschwindigkeit	13,0	m/s
minimale Betriebsdrehzahl	2,8	U/min
Solldrehzahl	9,0	U/min

Folgende Schallleistungspegel gelten unter Berücksichtigung der in Kap. 2, S. 11 aufgeführten Unsicherheiten.

Tab. 5: Berechneter Schallleistungspegel in dB(A) bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

Windgeschwin-	Sch	allleistungspegel in di	B(A)
digkeit (v _s) in 10 m Höhe	E-160 EP5 E2- MST-120-FB-C-01	E-160 EP5 E2- MST-140-FB-C-01	E-160 EP5 E2- MST-166-FB-C-01
3 m/s	94,0	94,5	95,0
3,5 m/s	97,9	98,3	98,7
4 m/s	100,7	101,2	101,6
4,5 m/s	103,2	103,6	104,1
5 m/s	105,4	105,8	105,8
5,5 m/s	105,9	106,0	106,0
6 m/s	106,0	106,0	106,0
6,5 m/s	106,0	106,0	106,0
7 m/s	106,0	106,0	106,0
7,5 m/s	106,0	106,0	106,0
8 m/s	106,0	106,0	106,0
8,5 m/s	106,0	106,0	106,0
9 m/s	106,0	106,0	106,0
9,5 m/s	106,0	106,0	106,0
10 m/s	106,0	106,0	106,0
10,5 m/s	106,0	106,0	106,0
11 m/s	106,0	106,0	106,0
11,5 m/s	106,0	106,0	106,0
12 m/s	106,0	106,0	106,0
95 % P _n	106,0	106,0	106,0

Tab. 6: Berechneter Schallleistungspegel in dB(A) bezogen auf die Windgeschwindigkeit in Nabenhöhe

Windgeschwindigkeit in Nabenhöhe (v _H)	Schallleistungspegel in dB(A)
5 m/s	97,3
5,5 m/s	99,3
6 m/s	101,2
6,5 m/s	102,9
7 m/s	104,4
7,5 m/s	105,8
8 m/s	105,9
8,5 m/s	106,0
9 m/s	106,0
9,5 m/s	106,0
10 m/s	106,0
10,5 m/s	106,0
11 m/s	106,0
11,5 m/s	106,0
12 m/s	106,0
12,5 m/s	106,0
13 m/s	106,0
13,5 m/s	106,0
14 m/s	106,0
14,5 m/s	106,0
15 m/s	106,0

3.3 Oktavbandpegel des lautesten Zustands

3.3.1 Oktavbandpegel NH

Tab. 7: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit v_H in Nabenhöhe

v _H in m/s	Oktavb	Oktavbandmittenfrequenz in Hz							
	31,5 63 125 250 500 1000 2000 4000 8000								
8,5	74,3	86,0	91,6	94,2	97,8	100,5	101,5	95,6	78,3

3.3.2 Oktavbandpegel E-160 EP5 E2-MST-120-FB-C-01

Tab. 8: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

v _s in 10 m	Oktavb	Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000								8000		
6	74,3	86,0	91,6	94,2	97,7	100,6	101,6	95,6	78,3		

3.3.3 Oktavbandpegel E-160 EP5 E2-MST-140-FB-C-01

Tab. 9: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

•		Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000								8000		
5,5	74,4	86,1	91,7	94,2	97,8	100,6	101,5	95,1	76,7		

3.3.4 Oktavbandpegel E-160 EP5 E2-MST-166-FB-C-01

Tab. 10: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit $\nu_{\rm s}$ in 10 m Höhe

		Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000								8000		
5,5	74,8	86,5	92,0	94,6	98,1	100,7	101,5	94,7	74,8		

5.2 Berechnete Schallleistungspegel Betriebsmodus 104,5 dB

Im Betriebsmodus 104,5 dB wird die Windenergieanlage leistungsoptimiert betrieben. Der höchste zu erwartende Schallleistungspegel liegt bei 104,5 dB(A) im Bereich der Nennleistung. Nach Erreichen der Nennleistung steigt der Schallleistungspegel nicht weiter an.

Tab. 20: Technische Daten

Parameter	Wert	Einheit
Nennleistung (P _n)	4901	kW
Nennwindgeschwindigkeit	13,4	m/s
minimale Betriebsdrehzahl	2,8	U/min
Solldrehzahl	8,4	U/min

Folgende Schallleistungspegel gelten unter Berücksichtigung der in Kap. 2, S. 11 aufgeführten Unsicherheiten.

Tab. 21: Berechneter Schallleistungspegel in dB(A) bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

Windgeschwin-	Sch	nallleistungspegel in dE	B(A)
digkeit (v _s) in 10 m Höhe	E-160 EP5 E2- MST-120-FB-C-01	E-160 EP5 E2- MST-140-FB-C-01	E-160 EP5 E2- MST-166-FB-C-01
3 m/s	94,0	94,5	95,0
3,5 m/s	97,9	98,3	98,7
4 m/s	100,7	101,2	101,6
4,5 m/s	103,2	103,6	104,0
5 m/s	104,4	104,4	104,4
5,5 m/s	104,5	104,5	104,5
6 m/s	104,5	104,5	104,5
6,5 m/s	104,5	104,5	104,5
7 m/s	104,5	104,5	104,5
7,5 m/s	104,5	104,5	104,5
8 m/s	104,5	104,5	104,5
8,5 m/s	104,5	104,5	104,5
9 m/s	104,5	104,5	104,5
9,5 m/s	104,5	104,5	104,5
10 m/s	104,5	104,5	104,5
10,5 m/s	104,5	104,5	104,5
11 m/s	104,5	104,5	104,5
11,5 m/s	104,5	104,5	104,5
12 m/s	104,5	104,5	104,5
95 % P _n	104,5	104,5	104,5

Tab. 22: Berechneter Schallleistungspegel in dB(A) bezogen auf die Windgeschwindigkeit in Nabenhöhe

Windgeschwindigkeit in Nabenhöhe (v _H)	Schallleistungspegel in dB(A)
5 m/s	97,3
5,5 m/s	99,3
6 m/s	101,2
6,5 m/s	102,9
7 m/s	104,3
7,5 m/s	104,4
8 m/s	104,5
8,5 m/s	104,5
9 m/s	104,5
9,5 m/s	104,5
10 m/s	104,5
10,5 m/s	104,5
11 m/s	104,5
11,5 m/s	104,5
12 m/s	104,5
12,5 m/s	104,5
13 m/s	104,5
13,5 m/s	104,5
14 m/s	104,5
14,5 m/s	104,5
15 m/s	104,5

5.3 Oktavbandpegel des lautesten Zustands

5.3.1 Oktavbandpegel NH

Tab. 23: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit v_H in Nabenhöhe

v _H in m/s	Oktavb	Oktavbandmittenfrequenz in Hz								
	31,5 63 125 250 500 1000 2000 4000 8000									
8	73,1	84,7	90,2	93,0	96,6	99,0	99,9	93,9	76,7	

5.3.2 Oktavbandpegel E-160 EP5 E2-MST-120-FB-C-01

Tab. 24: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit $v_{\rm s}$ in 10 m Höhe

0		Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000										
5,5	73,2	84,7	90,3	92,9	96,5	99,0	99,9	93,9	76,7		

5.3.3 Oktavbandpegel E-160 EP5 E2-MST-140-FB-C-01

Tab. 25: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

•		Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000										
5,5	73,4	84,9	90,4	93,0	96,6	99,1	99,9	93,4	75,1		

5.3.4 Oktavbandpegel E-160 EP5 E2-MST-166-FB-C-01

Tab. 26: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit $\rm v_s$ in 10 m Höhe

•		Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000								8000		
5,5	73,6	85,1	90,6	93,2	96,7	99,2	99,8	93,0	73,1		

8.2 Berechnete Schallleistungspegel Betriebsmodus 102,0 dB

Im Betriebsmodus 102,0 dB wird die Windenergieanlage leistungsoptimiert betrieben. Der höchste zu erwartende Schallleistungspegel liegt bei 102,0 dB(A) im Bereich der Nennleistung. Nach Erreichen der Nennleistung steigt der Schallleistungspegel nicht weiter an.

Tab. 44: Technische Daten

Parameter	Wert	Einheit
Nennleistung (P _n)	4343	kW
Nennwindgeschwindigkeit	14,4	m/s
minimale Betriebsdrehzahl	2,8	U/min
Solldrehzahl	7,5	U/min

Folgende Schallleistungspegel gelten unter Berücksichtigung der in Kap. 2, S. 11 aufgeführten Unsicherheiten.

Tab. 45: Berechneter Schallleistungspegel in dB(A) bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

Windgeschwin-	Schallleistungspegel in dB(A)								
digkeit (v _s) in 10 m Höhe	E-160 EP5 E2- MST-120-FB-C-01	E-160 EP5 E2- MST-140-FB-C-01	E-160 EP5 E2- MST-166-FB-C-01						
3 m/s	94,0	94,5	95,0						
3,5 m/s	97,9	98,3	98,7						
4 m/s	100,7	101,2	101,4						
4,5 m/s	101,9	102,0	102,0						
5 m/s	102,0	102,0	102,0						
5,5 m/s	102,0	102,0	102,0						
6 m/s	102,0	102,0	102,0						
6,5 m/s	102,0	102,0	102,0						
7 m/s	102,0	102,0	102,0						
7,5 m/s	102,0	102,0	102,0						
8 m/s	102,0	102,0	102,0						
8,5 m/s	102,0	102,0	102,0						
9 m/s	102,0	102,0	102,0						
9,5 m/s	102,0	102,0	102,0						
10 m/s	102,0	102,0	102,0						
10,5 m/s	102,0	102,0	102,0						
11 m/s	102,0	102,0	102,0						
11,5 m/s	102,0	102,0	102,0						
12 m/s	102,0	102,0	102,0						
95 % P _n	102,0	102,0	102,0						

D0959532-1 / DA 39 yon 56

Tab. 46: Berechneter Schallleistungspegel in dB(A) bezogen auf die Windgeschwindigkeit in Nabenhöhe

Windgeschwindigkeit in Nabenhöhe (v _H)	Schallleistungspegel in dB(A)
5 m/s	97,3
5,5 m/s	99,3
6 m/s	101,2
6,5 m/s	101,9
7 m/s	102,0
7,5 m/s	102,0
8 m/s	102,0
8,5 m/s	102,0
9 m/s	102,0
9,5 m/s	102,0
10 m/s	102,0
10,5 m/s	102,0
11 m/s	102,0
11,5 m/s	102,0
12 m/s	102,0
12,5 m/s	102,0
13 m/s	102,0
13,5 m/s	102,0
14 m/s	102,0
14,5 m/s	102,0
15 m/s	102,0

Oktavbandpegel des lautesten Zustands 8.3

8.3.1 Oktavbandpegel NH

Tab. 47: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit v_H in Nabenhöhe

v _H in m/s	Oktavbandmittenfrequenz in Hz									
	31,5 63 125 250 500 1000 2000 4000 8000								8000	
7	71,2	82,6	88,1	91,0	94,4	96,5	97,2	91,1	73,9	

8.3.2 Oktavbandpegel E-160 EP5 E2-MST-120-FB-C-01

Tab. 48: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit vs in 10 m Höhe

•		andmitt	enfrequ	enz in H	lz				
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000							8000	
5	71,2	82,5	88,1	90,9	94,4	96,5	97,2	91,1	73,9

8.3.3 Oktavbandpegel E-160 EP5 E2-MST-140-FB-C-01

Tab. 49: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit vs in 10 m Höhe

v _s in 10 m Oktavbandmittenfrequenz in Hz									
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000							8000	
4,5	71,3	82,7	88,2	90,9	94,4	96,5	97,2	90,7	72,4

8.3.4 Oktavbandpegel E-160 EP5 E2-MST-166-FB-C-01

Tab. 50: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

•		andmitt	enfrequ	enz in H	lz				
Höhe in m/s	31,5 63 125 250 500 1000 2000 4000 8000								8000
4,5	71,6	82,9	88,4	91,2	94,6	96,6	97,0	90,1	70,3

D0959532-1 / DA

10.2 Berechnete Schallleistungspegel Betriebsmodus 98,0 dB

Im Betriebsmodus 98,0 dB wird die Windenergieanlage leistungsoptimiert betrieben. Der höchste zu erwartende Schallleistungspegel liegt bei 98,0 dB(A) im Bereich der Nennleistung. Nach Erreichen der Nennleistung steigt der Schallleistungspegel nicht weiter an.

Tab. 60: Technische Daten

Parameter	Wert	Einheit
Nennleistung (P _n)	3578	kW
Nennwindgeschwindigkeit	16,0	m/s
minimale Betriebsdrehzahl	2,8	U/min
Solldrehzahl	6,3	U/min

Folgende Schallleistungspegel gelten unter Berücksichtigung der in Kap. 2, S. 11 aufgeführten Unsicherheiten.

Tab. 61: Berechneter Schallleistungspegel in dB(A) bezogen auf die standardisierte Windgeschwindigkeit v_s in 10 m Höhe

Windgeschwin-	Sch	allleistungspegel in di	B(A)	
digkeit (v _s) in 10 m Höhe	E-160 EP5 E2- MST-120-FB-C-01	E-160 EP5 E2- MST-140-FB-C-01	E-160 EP5 E2- MST-166-FB-C-01	
3 m/s	94,0	94,5	95,0	
3,5 m/s	97,5	97,6	97,8	
4 m/s	98,0	98,0	98,0	
4,5 m/s	98,0	98,0	98,0	
5 m/s	98,0	98,0	98,0	
5,5 m/s	98,0	98,0	98,0	
6 m/s	98,0	98,0	98,0	
6,5 m/s	98,0	98,0	98,0	
7 m/s	98,0	98,0	98,0	
7,5 m/s	98,0	98,0	98,0	
8 m/s	98,0	98,0	98,0	
8,5 m/s	98,0	98,0	98,0	
9 m/s	98,0	98,0	98,0	
9,5 m/s	98,0	98,0	98,0	
10 m/s	98,0	98,0	98,0	
10,5 m/s	98,0	98,0	98,0	
11 m/s	98,0	98,0	98,0	
11,5 m/s	98,0	98,0	98,0	
12 m/s	98,0	98,0	98,0	
95 % P _n	98,0	98,0	98,0	

D0959532-1 / DA 49 yon 56

Tab. 62: Berechneter Schallleistungspegel in dB(A) bezogen auf die Windgeschwindigkeit in Nabenhöhe

Windgeschwindigkeit in Nabenhöhe (v _H)	Schallleistungspegel in dB(A)
5 m/s	97,3
5,5 m/s	98,0
6 m/s	98,0
6,5 m/s	98,0
7 m/s	98,0
7,5 m/s	98,0
8 m/s	98,0
8,5 m/s	98,0
9 m/s	98,0
9,5 m/s	98,0
10 m/s	98,0
10,5 m/s	98,0
11 m/s	98,0
11,5 m/s	98,0
12 m/s	98,0
12,5 m/s	98,0
13 m/s	98,0
13,5 m/s	98,0
14 m/s	98,0
14,5 m/s	98,0
15 m/s	98,0

Oktavbandpegel des lautesten Zustands 10.3

10.3.1 Oktavbandpegel NH

Tab. 63: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit v_H in Nabenhöhe

v _H in m/s	Oktavbandmittenfrequenz in Hz								
	31,5 63 125 250 500 1000 2000 4000 8000								8000
5,5	68,1	79,2	84,6	87,4	90,6	92,4	93,0	86,9	69,8

10.3.2 Oktavbandpegel E-160 EP5 E2-MST-120-FB-C-01

Tab. 64: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit vs in 10 m Höhe

· ·		andmitt	enfrequ	enz in H	lz				
Höhe in m/s	31,5	63	125	250	500	1000	2000	4000	8000
4	68,4	79,5	84,9	87,6	90,7	92,3	92,8	86,8	69,8

10.3.3 Oktavbandpegel E-160 EP5 E2-MST-140-FB-C-01

Tab. 65: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit vs in 10 m Höhe

v _s in 10 m Höhe in m/s		Oktavbandmittenfrequenz in Hz											
	31,5	63	125	250	500	1000	2000	4000	8000				
4	68,7	79,8	85,2	87,9	90,9	92,4	92,8	86,4	68,2				

10.3.4 Oktavbandpegel E-160 EP5 E2-MST-166-FB-C-01

Tab. 66: Oktavbandpegel in dB(A), bezogen auf die standardisierte Windgeschwindigkeit vs in 10 m Höhe

v _s in 10 m Höhe in m/s		andmitt	enfrequ	enz in H	z				
	31,5	63	125	250	500	1000	2000	4000	8000
4	68,9	80,0	85,4	88,1	91,0	92,4	92,6	85,7	66,1

D0959532-1 / DA

WIND-consult GmbH

Auszug aus dem Prüfbericht WICO 17301B97 zur Schallemission der Windenergieanlage vom Typ ENERCON E-66 mit einer Nabenhöhe von 67 m

entsprechend der schalltechnischen Vermessung gemäß "Technische Richtlinie zur Bestimmung der Leistungskurve, des Schalleistungspegels und der elektrischen Eigenschasten von Windenergieanlagen, Rev. 12 vom 01.10.1998" (Herausgeber: FGW)

Hersteller:

ENERCON GmbH

Dreekamp 5 D-26605 Aurich

	Refere	nzpunkt	Schallemissic	ons-Parameter	Bemerkungen
	Wind- geschwindigkeit in 10 m über Grund in ms ⁻¹	elektrische Wirklei- stung für den Refe- renzpunkt in kW ²⁾			
Schalleistungs- pegel L _{WA,P}	6 7 8 9 10	489,8 789,3 1118,2 1398,7	97,5 100,6 101,9	dB(A) dB(A) dB(A) dB(A) dB(A)	(5) - - (3)
Tonzuschlag für den Nahbereich K _{TN}	6 7 8 9 10	489,8 789,3 1118,2 1398,7	0 dB 0 dB 0 dB 0 dB - dB	- Hz - Hz - Hz - Hz - Hz - Hz	(4) (6) - - - (4)
Impulszuschlag für den Nah- bereich K _{IN}	6 7 8 9 10	489,8 789,3 1118,2 1398,7	0 0 0 0 0	dB dB dB dB	(6) - - - (4)

				Terz-S	Schallei	stungs	oegel R	eferenz	punkt v	₁₀ = 8 m	s ⁻¹ in di	3(A)				
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA, P}	58,7	62,4	67,3	69,7	72,9	75,2	77,6	79,6	81,3	83,2	86,4	84.9	87.4	90.5	91.1	91.2
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	
L _{WA. P}	90,0	91,1	91,5	89,8	87,5	85,1	82,6	79,5	75,4	71,2	70,2	70,2	71,6	70.3	62.3	52.6

				Terz-Sc	halleis	tungspe	egel Ref	ferenzp	unkt v ₁₀	= 9,14	ms ⁻¹ in o	dB(A)	XXX (1986) (1966)			
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA, P}	65,7	70,8	74,0	76,9	79,2	80,6	82,3	83,7	84,7	85,5	87,3	86,5	88,1	90.8	91.8	92.2
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
L _{WA, P}	91,4	92,2	92,4	91,5	89,5	87,2	84,4	81,1	77,2	72,9	71,0	70,3	71,9	70,6	62.8	52.6

Bemerkungen:

(1) Dieser Auszug aus dem Prüfbericht ist nur gültig im Zusammenhang mit der Herstellerbescheinigung vom 1999-03-09 und der Leistungskurve WICO 17203B97.

(2) unter Berücksichtigung der Luftdichtekorrektur

- (3) Der maximale Schallemissionswert wird für die 95%ige Nennleistung angegeben. Dem entspricht unter Berücksichtigung der Leistungskurve und der Luftdichtekorrektur eine Windgeschwindigkeit in 10 m ü.G. von v₁₀ = 9,14 ms⁻¹. Durch die Verteilung der Meßwerte und der genannten Grenze des oberen bin-Intervalls ergibt sich der oben genannte Schalleistungspegel als maximale Referenz.
- (4) Dieser Referenzpunkt liegt nach der Leistungskurve WICO 17203B97 oberhalb des nach der oben genannten Richtlinie anzugebenden Referenzpunktes der 95%igen Nennleistung.

(5) In diesem Meßintervall stehen nicht genügend Meßwerte zur Verfügung.

(6) Der Auswertung liegt nur ein 1-Minuten-Mittelwert zugrunde.

Diese Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsgutachten). Aus Gründen der schalltechnischen Planungssicherheit sind im Rahmen des Genehmigungsverfahrens spezielle Genehmigungserfordernisse hinsichtlich der Anzahl der akustischen Vermessungen zu berücksichtigen.

Meßinstitut:

WIND-consult GmbH

Interschrift

Ort, Datum:

Bargeshagen, den 1999-03-11

Semental Consultation

Ingenieurgesellschaft für umweltschonende Energiewandlung mbH

Terzbanddaten WICO 17301B97 (9,14m/s)

f (Hz)	fu	fm	fo		Oktavband
63	80,6	82,3	83,7	\rightarrow	87,2
125	84,7	85,5	87,3	\rightarrow	90,7
250	86,5	88,1	90,8	\rightarrow	93,6
500	91,8	92,2	91,4	\rightarrow	96,6
1000	92,2	92,4	91,5	\rightarrow	96,8
2000	89,5	87,2	84,4	\rightarrow	92,3
4000	81,1	77,2	72,9	\rightarrow	83,0
8000	71,0	70,3	71,9	\rightarrow	75,9
Summe					101,8

REpower Dokumenten-Nummer						
D-1.1-VM.51.	7.03-A	A				
Freigabe	Datun	1				
TR 12.09.20						

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Schalltechnisches Gutachten zu einer Windenergieanlage des Typs Repower MD70 in Kaiser-Wilhelm-Koog

Messdatum: 2001-09-10/13

Juli 2002

WT 2166/02

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen akkreditiertes Prüflaboratorium
Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

3.5 Pegel von Einzelereignissen

Einzelereignisse - z.B. das Anfahren oder Abschalten der Anlage - sollen den Mittelungspegel des Schalldruckes bei den relevanten Windgeschwindigkeiten nicht um mehr als 10 dB überschreiten. Bei dieser Anlage wurde keine Überschreitung festgestellt.

3.6 Tonhaltigkeit und Frequenzanalysen

Das auf der schallharten Platte gemessene Geräusch wird mit dem FFT-Analysator B&K 2144 schmalbandig auf seine Frequenzzusammensetzung analysiert. Die Analyse wird nachträglich von den auf DAT-Recorder aufgezeichneten Geräuschen durchgeführt. Zur Beurteilung der Tonhaltigkeit von drehzahlvariablen Windenergieanlagen wurden richtlinienkonform für die Windgeschwindigkeitswerte 6, 7, 8, 9 und 10 m/s (bzw. 95% der Nennleistung) jeweils 12 Spektren zu jeweils 10 s herangezogen. Für jedes Spektrum wird eine Tonhaltigkeitsanalyse durchgeführt.

In dem breitbandigen Geräusch der MD70 treten tonale Frequenzen in verschiedenen Bereichen auf. Für die Analyse nach [FGW13] ergeben sich die in Tabelle 5 dargestellten Tonhaltigkeitszuschläge als Funktion der Windgeschwindigkeit. Da der Ton unterhalb 100 Hz liegt, führt er nach [FGW13] zu keinem Tonzuschlag.

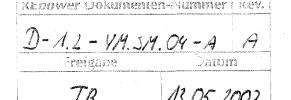
Repräsentative Spektren des Betriebsgeräusches, die für die Tonhaltigkeitsanalyse zugrunde gelegt wurden, sind in Anhang 3 festgehalten. Es liegen weitere tonale Linien im Frequenzspektrum der MD70 vor, welche aber aufgrund ihrer geringeren Intensität als nicht relevant im Sinne der Norm gelten. Eine Tonhaltigkeitsanalyse dieser Linien ist daher nicht erforderlich.

Tabelle 5: Tonhaltigkeitszuschläge gemäß [FGW13] bzw. [EDIN 45681]

WG in 10 m Höhe [m/s]	6	7	8	9 1
Tonhaltigkeitszuschlag [dB]	0	0	0	0

¹ bzw. die der 95%-igen Nennleistung entsprechende WG

Hinweis: Die ermittelte Tonhaltigkeit ist nicht unmittelbar auf den Fernbereich übertragbar.


3.7 Oktavanalyse

In Tabelle 6 sind die A-bewerteten Schallleistungsspektren für die immissionsrelevanten Windgeschwindigkeiten von ca. 8 und 10 m/s (bezogen auf 10 m Höhe) dargestellt. Abweichend von der gültigen Fassung der [FGW13] wurde mit Bezug auf die Anwendung in frequenzabhängigen Ausbreitungsrechnungen gemäß EDIN ISO 9613-2 eine Darstellung als Oktavspektrum gewählt.

Tabelle 6: A-bewertete Oktavspektren bei unterschiedlichen Windgeschwindigkeiten

f [Hz]	31,5	63	125	250	500	1000	2000	4000	8000	energetische Summe
L _{AF} [dB]		era a casacca e casacca e e e e e e e e e e e e e e e e e e								
bei 8 m/s	74,6	84,8	90,2	93,1	94,7	96,4	96	92,1	83,1	102,2
bei 10 m/s ¹	75,1	85,3	90,7	93,6	95,2	96,9	96,5	92,6	83,6	102,7

¹ bzw. die der 95%igen Nennleistung entsprechende WG

Auszug aus dem Prüfbericht 27053-1.001

Seite 2 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten					
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77		
		Nennleistung	1500 kW		
		Nabenhöhe	85,0 m		
		Rotordurchmesser	77,0 m		
	1. Messung	2. Messung	3. Messung		
Seriennummer	70.075	70.036	70.227		
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye		
vermessene Nabenhöhe	85 m	85 m	61,5 m		
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers		
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001		
Datum	07.08.2002	02.10.2002	06.05.2003		
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197		
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580		
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P		

1. Messung:

Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002)

Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

2. und 3. wessung: Schallennssionsparameter (Pruibericht Leistungskurve: W12100/02 vollt 15.05.2002)													
Wind- geschwindigkeit		Sci	halleistu	ngspegel L			Mittelwert	Standard- abweichung	K nach /2/				
in 10 m Höhe	1. Me	essung	2. N	lessung	3. Messung 1)		L _{WA}	s	$\sigma_R = 0.5 \text{ dB}$				
6 m/s	100,8	B dB(A)	99	4 dB(A)	99,9	dB(A)	100,1 dB(A)	0,7 dB	1,7 dB				
7 m/s	102,€	dB(A)	101	,0 dB(A)	101,	7 dB(A)	101,8 dB(A)	0,8 dB	1,8 dB				
8 m/s	103,3	3 dB(A)	102	,8 dB(A)	102,4	4 dB(A)	102,8 dB(A)	0,5 dB	1,3 dB				
8,3 m/s ⁴⁾	103,3	3 dB(A)	103,3 dB(A)		102,3 dB(A)		103,0 dB(A)	0,6 dB	1,5 dB				
	Tor	nzuschlag	bei vermessener Nabenhöhe K _{TN} :										
	1. M e	ssung ²⁾	2. M e	2. Messung 2)		ssung 3)							
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz							
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz							
8 m/s	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz							
8,3 m/s ⁴⁾	0 dB	- Hz	1 dB	148 Hz	2 dB	164 Hz							
			lmpulsz	uschlag K _{IN}									
	1. Me	ssung ²⁾	2. M	essung ²⁾	3. Mes	ssung 3)							
6 m/s) dB	0 dB		C	dB							
7 m/s	() dB	0 dB		c	dB							
8 m/s	() dB		0 dB	0	dB							
8,3 m/s ⁴⁾	() dB		0 dB		dB							

	Terz-Schalleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v ₁₀ in dB(A) ⁴⁾												
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA}	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0	
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA}	91,7	91,2	90,5	89,5	88,3	87,3	86,2	84,9	82,1	80,4	78,3	72,8	

		Oktav-Schalleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v ₁₀ in dB(A) ⁴⁾										
Frequenz	63	125	250	500	1000	2000	4000	8000				
L _{WA}	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9				

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe

2) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 85 m 3) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 61,5 m

4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

Datum:

KÖTTER Consulting Engineers

Bonfatiusstraße 400

Bonifatiusstraße 400Sten 28432 Rheine

Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43 18-1-3048-NF Seite 83/91

08.05.2003

48432 Rheine

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V80 – 2.0 MW, 105.1 dB(A) aus mehreren Einzelmessungen nach FGW Rev. 15 umgerechnet auf eine Nabenhöhe von 100 m über Grund

September 2004

Bericht WT 3718/04

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V80 – 2.0 MW, 105.1 dB(A) aus mehreren Einzelmessungen nach FGW Rev. 15 umgerechnet auf eine Nabenhöhe von 100 m über Grund

September 2004

Bericht WT 3718/04

	1									
Standort bzw. Messort:	rt: Langenberg, Almdorf, Neu Guthendorf und Riesenbeck									
Auftraggeber:	Auftraggeber: Vestas Deutschland GmbH Otto-Hahn-Straße 2-4 25813 Husum									
Auftragnehmer:	WINDTEST Ka Sommerdeich	iiser-Wilhelm-Koog Gmb	Н							
	25709 Kaiser-V	Vilhelm-Koog								
Datum der Auftragserteilung:	2004-09-08 Auftragsnummer : 6020 04 02685 06									

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Er umfasst insgesamt 3 Seiten.

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 3

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendat	en								
Hersteller	Vestas Deutsc	nland GmbH	Anlagenbezeichnung	Vestas V80 – 2.0 MW, 105.1 dB	(A)				
	Otto-Hahn-Stra	iße 2-4	Nennleistung in kW	20	000				
	25813 Husum		Nabenhöhe in m	1	100				
	Deutschland		Rotordurchmesser in	m	80				
Angahen zi	ır Einzelmessung		Messung	j-Nr.					
7 tiligaboli 20	in Emizemicooding	1		2					
Seriennumm	er		14096	127	'45				
Standort			Langenberg	Almd	lorf				
Vermess. Na	benhöhe (m)		100						
Messinstitut		WIND-consult GmbH WINDTEST Kaiser-Wilhelm-Koog Gmb							
Prüfbericht			WICO 319SE902/01	WT 2602/0					
Datum			2003-01-31	2003-02-	-14				
Getriebetyp		Hansen	EH802N21-BN-100,66	Hansen EH802N21-BN-100	,66				
Generatortyp)	Leroy-somer Ge	en-3-FSLB-500LB 4-B3	Leroy-somer Gen-3-FSLB-500LB 4-	·B3				
Rotorblattyp			Vestas 39 m	Vestas 39) m				
Angahen zi	ır Einzelmessung	Messung-Nr. (Fortsetzung)							
7 (II gabon 20	a Emzemiessang	3		4	n				
Seriennumm	er		11991	16892					
Standort			Neu Guthendorf	Riesenbeck					
Vermess. Na	benhöhe (m)		78	100					
Messinstitut		WINDTEST Kaise	er-Wilhelm-Koog GmbH	WINDTEST Grevenbroich GmbH					
Prüfbericht			WT 3208/04	SE03014B1					
Datum			2004-03-11	2003-10-06/07					
Getriebetyp		Lohmann & St	olterfoht GPV440-3331	Lohmann & Stolterfoht GPV441 SPG					
Generatortyp)	W	eier DVSG500/4AMSP	Leroy-somer FLSB-500 LB4-B3					
Rotorblattyp			Vestas 39 m	Vestas 39 m					

Schallle	istungspegel L _{WA,k} :					
	Messung		Windgesch	nwindigkeit in 10 m	Höhe	
	Wicodang	6 m/s	7 m/s	8 m/s	9 m/s 1)	10 m/s
	1	103,7 dB(A)	104,2 dB(A)	104,2 dB(A)	103,9 dB(A)	-
	2	-	104,1 dB(A)	104,3 dB(A)	103,9 dB(A)	-
	3	103,3 dB(A)	103,8 dB(A)	103,6 dB(A)	103,3 dB(A)	-
	4	103,0 dB(A)	103,9 dB(A)	103,7 dB(A)	102,6 dB(A)	-
	5	. ,				
	6					
	7					
	8					
	9					
	n					
	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$	103,3 dB(A)	104,0 dB(A)	104,0 dB(A)	103,4 dB(A)	-
	Standard- Abweichung s	0,4 dB(A)	0,2 dB(A)	0,4 dB(A)	0,6 dB(A)	-
	K nach /2/ σ_R =0,5 dB	1,2 dB(A)	1,0 dB(A)	1,1 dB(A)	1,5 dB(A)	-

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 15, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ prEN 50376, Declaration of Sound Power Level and Tonality Values of Wind Turbines July 2001

Vordruck urheberrechtlich geschützt. Nachdruck und Vervielfältigung nur mit Zustimmung der Herausgeber

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 3 von 3

Schalle	missionsparar	neter: Zuschläឲ្	ge			
onzusch	nlag bei vermesse	ner Nabenhöhe K _T	N:			
	Messung		Windo	geschwindigkeit in 10) m Höhe	
	Moodang	6 m/s	7 m/s	8 m/s	9 m/s 1)	10 m/s
	1	0 dB	0 dB	0 dB	0 dB	-
	2	-	0 dB	0 dB	0 dB	-
	3	0 dB	0 dB	0 dB	0 dB	-
	4	0 dB	0 dB	0 dB	0 dB	-
	5					
	6					
	7					
	8					
	9					
	n					

Impulszus	schlag K _{IN} :										
	Messung	Windgeschwindigkeit in 10 m Höhe									
		6 m/s	7 m/s	8 m/s	9 m/s 1)	10 m/s					
	1	0 dB	0 dB	0 dB	0 dB	-					
	2	-	0 dB	0 dB	0 dB	-					
	3	0 dB	0 dB	0 dB	0 dB	-					
	4	0 dB	0 dB	0 dB	0 dB	-					
	5										
	6										
	7										
	8										
	9										
	n										

Terz- Schal	Terz- Schallleistungspegel (Mittel aus 3 Messungen) Referenzpunkt $\mathcal{V}_{10L_{W\!A,\mathrm{max}}}$ in dB(A)												
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
$L_{WA,max}$	77,7	80,1	83,0	85,6	88,0	89,5	90,9	92,0	94,0	94,6	94,4	93,5	
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA,max}	93,5	93,0	92,3	91,6	90,9	89,1	87,5	84,4	80,7	75,9	70,7	67,3	

Oktav- Schallleistungspegel (Mittel aus 3 Messungen) Referenzpunkt $ \mathcal{V}_{10L_{W\!A,\mathrm{max}}} $ in dB(A)												
Frequenz		63	125	250	500	1000	2000	4000	8000			
$L_{WA,max}$		85,5	92,6	97,2	98,9	97,7	95,4	89,7	77,6			

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

Bemerkungen: $^{1)}$ Bei einer 100 m hohen Anlage beträgt die der 95%igen Nennleistung (1900 kW) entsprechende Windgeschwindigkeit 8,8 m/s.

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Datum: 2004-09-10

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

DAP-PL-1556.00

Vordruck urheberrechtlich geschützt. Nachdruck und Vervielfältigung nur mit Zustimmung der Herausgeber

Dipl.-Ing J. Neubert

Auszug aus dem Prüfbericht - Nabenhöhe = 164 m

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien

für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01.02.2008 (Herausgeber: FGW e.V., Oranienburger Straße 45, D-10117 Berlin) Seite 1 von 4

Auszug aus dem Prüfbericht WICO 151SE618/04

zur Schallemission der Windenergieanlage vom Typ N149/4.0-4.5 in der Betriebsweise Mode 0

All	gemeine An	gaben	Technisch	e Date	n	
Anlagenhersteller	Nordex En	ergy GmbH	Nennleistung WEA		4500	kW
	Langenho	rner Chaussee 600	Nennleistung Betriebsweise		4500	kW
	D-22419 H	lamburg	vermessene Nabenhöhe	:	125,0	m ü.G.
Seriennummer	86047		Rotordurchmesser	:	149,0	m
Standort	Wennersto	orf,	Turmbauart	konis	cher R	ohrturm
	Niedersac	hsen	Art der Leistungsregelung	pitch		
Daten zum	Rotor (Hers	tellerangaben)	Getriebe u. Generator	(Herst	ellerar	ngaben)
Rotorblattherstelle	er	Nordex Energy GmbH	Getriebehersteller	V	Vinerg	У
Typenbezeichnung	Blatt	NR74.5-1	Typenbezeichnung Getriebe	Р	PZAB 3600	
Blatteinstellwinkel		variabel	Getriebeübersetzungsverhältnis		1 :113,61	
Rotorblattzahl		3	Generatorhersteller		iemen	s AG
Rotornenndrehzah	l/ -bereich	11,0 / 6,412,1 min ⁻¹	Typenbezeichnung Generator		r JFCA-630MR-06A	
Zusatzkomponente	en	Vortex-Generatoren,	Generatordrehzahlbereich	7	3013	377 min ⁻¹
		Serrations				

Leistungskurve: berechnete Kurve (F008_271_A12_DE, Revision 01, Nordex Energy GmbH, 28.08.2017)

	Referenzp	unkt	Schallemissions-	Bemerkungen
	Standardisierte	Elektrische	parameter	
	Windgeschwindig- keit in 10 m Höhe	Wirkleistung		
Schalleistungspegel	5 m/s	2207 kW	100,9 dB(A)*	2)
$L_{WA,k}$	6 m/s	3636 kW	105,5 dB(A)	
	7 m/s	4407 kW	105,9 dB(A)	
	8 m/s	4500 kW	105,6 dB(A)	3)
	9 m/s	4500 kW	-	4)
	10 m/s	4500 kW	-	4)
	6,7 m/s	4275 <i>kW</i>	105,9 dB(A)	1)
Tonzuschlag für	5 m/s	2207 kW	0 dB bei 802 Hz	2)
den Nahbereich	6 m/s	3636 kW	0 dB bei 1378 Hz	
K _{TN}	7 m/s	4407 kW	0 dB bei 108 Hz	
	8 m/s	4500 kW	0 dB bei 109 Hz	5)
	9 m/s	4500 kW	-	4)
	10 m/s	4500 kW	-	4)
	6,7 m/s	4275 <i>kW</i>	0 dB bei 108 Hz	1)

Auszug aus dem Prüfbe	ericht WICO 151SE618,	/04 – Nabenhöh	e = 164 m	Seite 2 von 4
Г	1	ı		
Impulszuschlag für	5 m/s	2207 kW	0 dB	2)
den Nahbereich	6 m/s	3636 kW	0 dB	
K _{IN}	7 m/s	4407 kW	0 dB	
	8 m/s	4500 kW	0 dB	3)
	9 m/s	4500 kW	-	4)
	10 m/s	4500 kW	-	4)
	6,7 m/s	4275 kW	0 dB	1)

	Terz- Schallleistungspegel 5,0 m/s auf 10 m über Grund													
Frequenz	Hz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA,Terz}	dB(A)	76,5*	[78,0]	81,3*	83,6	85,2	85,6	87,3	87,6	89,1	89,6	89,3	91,1*	
Frequenz	Hz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA,Terz}	dB(A)	91,8*	92,0*	91,0*	89,6	87,7	84,7	80,3	74,9	67,9	[58,7]	[55,6]	[54,0]	
		Ol	ktav- Sc	hallleist	ungspe	gel 5,0	m/s a	uf 10 m	über Gr	und				
Frequenz	Hz	63	12	25	250	500		1000	2000)	4000		8000	
L _{WA,Oktav}	dB(A)	[83,9]	* 89	,7	92,8	94,8	*	96,4*	92,5	;	81,6		[61,3]	

	Terz- Schallleistungspegel 6,0 m/s auf 10 m über Grund													
Frequenz	Hz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA,Terz}	dB(A)	79,80	82,9*	85,2	88,6	89,7	89,9	91,9	92,4	94,0	94,6	94,3	95,5	
Frequenz	Hz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA,Terz}	dB(A)	95,9	95,8	95,2	94,6	92,7	89,5	85,0	79,7	72,9	63,0*	[56,2]	[54,3]	
		Ok	tav- Sc	hallleis	tungspe	gel 6,0	m/s a	uf 10 m	über Gr	und				
Frequenz	Hz	63	12	25	250	500		1000	200	0	4000		8000	
L _{WA,Oktav}	dB(A)	87,9*	\$ 94	,2	97,6	99,6	,	100,4	97,5	5	86,4	[64,2]*	

	Terz- Schallleistungspegel 7,0 m/s auf 10 m über Grund													
Frequenz	Hz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA,Terz}	dB(A)	80,30	82,8*	85,1	89,6	89,6	89,0	91,2	92,1	94,2	95,1	94,7	96,1	
Frequenz	Hz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA,Terz}	dB(A)	96,2	96,4	95,8	95,5	94,0	90,2	85,5	79,9	72,7	62,1*	[55,7]	[53,8]	
		Ok	tav- Sc	nallleis	tungspe	gel 7,0	m/s a	uf 10 m	über Gr	und				
Frequenz	Hz	63	12	25	250	500		1000	2000)	4000		8000	
L _{WA,Oktav}	dB(A)	88,0*	\$ 94	,2	97,5	100,3	1	100,9	98,5	;	86,7	[63,5]*	

Auszug aus dem Prüfbericht WICO 151SE618/04 – Nabenhöhe = 164 m

Seite 3 von 4

	Terz- Schallleistungspegel 8,0 m/s auf 10 m über Grund													
Frequenz	Hz	50	63	80	100	125	160)	200	250	315	400	500	630
L _{WA,Terz}	dB(A)	80,70	82,6	84,3	88,6	88,1	88,	2	90,1	91,1	93,5	94,7	94,6	95,7
Frequenz	Hz	800	1000	1250	1600	2000	250	0	3150	4000	5000	6300	8000	10000
L _{WA,Terz}	dB(A)	96,4	96,4	95,8	95,3	93,7	90,	0	85,1	79,6	72,4	61,9*	[55,5]	[53,3]
		Ok	tav- Sc	hallleis	tungspe	egel 8,0	m/s	aut	f 10 m	über Gr	und			
Frequenz	Hz	63	12	25	250	500		1	.000	2000)	4000		8000
L _{WA,Oktav}	dB(A)	87,6	93	3,1	96,6	99,8	3	1	01,0	98,3	3	86,4		[63,3]*

	Terz- Schallleistungspegel 6,7 m/s auf 10 m über Grund													
Frequenz	Hz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA,Terz}	dB(A)	80,30	82,8*	85,1	89,6	89,6	89,0	91,2	92,1	94,2	95,1	94,7	96,1	
Frequenz	Hz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA,Terz}	dB(A)	96,2	96,4	95,8	95,5	94,0	90,2	85,5	79,9	72,7	62,1*	[55,7]	[53,8]	
	Oktav- Schallleistungspegel 6,7 m/s auf 10 m über Grund													
Frequenz	Hz	63	12	25	250	500		1000	2000)	4000		8000	
L _{WA,Oktav}	dB(A)	88,0*	94	,2	97,4	100,3	1	100,9	98,5	;	86,7	[63,5]*	

Auszug aus dem Prüfbericht WICO 151SE618/04 - Nabenhöhe = 164 m

Seite 4 von 4

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Hersellerbescheinigung vom 18.04.2019. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- Betriebspunkt der 95%igen Nennleistung in 10 m ü. G., unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Messtag, für den der Schallleistungspegel informativ anzugeben ist.
- ²⁾ In der Windklasse 5 m/s beträgt das Signal-Rausch-Verhältnis mehr als 3 dB und weniger als 6 dB. Die Fremdgeräuschkorrektur wurde abweichend energetisch durchgeführt, um den Schallleistungspegelverlauf physikalisch korrekt abzubilden.
- Die Umrechnung der Schallleistungspegel auf andere Nabenhöhen ist nur bis zu einer Windgeschwindigkeit von 7,79 m/s möglich, da in der Windklasse 8 m/s keine vollständige Datenbasis (verteilt über die gesamte Windklasse) ermittelt wurde.
- In den Windklassen 9 m/s und 10 m/s liegen keine 10-Sekunden-Mittelwerte für das Gesamtgeräusch vor. Die Werte können nicht angegeben werden.
- In der Windklasse 8 m/s liegen drei Schmalbandspektren (10-Sekunden-Mittelung) für das Gesamtgeräusch vor. Die Analyse auf Tonhaltigkeit im Nahbereich beruht auf dieser Datenbasis.
- * 3,0 dB ≤ SNR < 6,0 dB; Fremdgeräuschkorrektur mit konstant 1,3 dB durchgeführt
- [] SNR < 3,0 dB; Fremdgeräuschkorrektur mit konstant 3,0 dB durchgeführt

Gemessen durch: WIND-consult GmbH

Reuterstr. 9

D-18211 Bargeshagen

Datum: 04.06.2019

T. Torkler M.Sc.

stellv. fach. Verantw. der Messstelle C. Hoffmann M.Eng.

fach. Verantw. der Messstelle

(Dieser Prüfbericht wurde elektronisch unterschrieben.)

Akkreditierung und theoretische Grundlagen

Hinweis: Zum 11.09.2019 hat sich die Firmenbezeichnung der Ramboll CUBE GmbH zu Ramboll Deutschland GmbH geändert. Die Änderung hat keinen Einfluss auf den akkreditierten Bereich des Unternehmens. Es ist lediglich eine formale Änderung der Firmenbezeichnung auf der Akkreditierungsurkunde nötig. Die entsprechenden Modalitäten zur Änderung befinden sich derzeit im Prozess.

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

Ramboll CUBE GmbH

mit den Standorten

Breitscheidstraße 6, 34119 Kassel Andreaestraße 3, 30159 Hannover

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Bestimmung von Windpotenzial und Energieerträgen von Windenergieanlagen (WEA) einschließlich Prüfung windklimatologischer Eingangsdaten; Bestimmung des 60 % Referenzertrag-Nachweises; Bestimmung der Standortgüte; Durchführung und Auswertung von Windmessungen zur Bestimmung des Windpotenzials; Erstellung von Schallimmissionsprognosen für Windenergieanlagen; Erstellung von Gutachten zur natürlichen Umgebungsturbulenz von Windenergieanlagenstandorten auf der Grundlage der Berechnung von Turbulenzintensitäten

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 08.03.2018 mit der Akkreditierungsnummer D-PL-11038-01 und ist gültig bis 01.11.2020. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 3 Seiten.

Registrierungsnummer der Urkunde: D-PL-11038-01-00

Berlin, 08.03.2018

Im Auftrag Dr. Heike Mank

Theoretische Grundlagen

Allgemeines zur Schallproblematik

Grundlagen

Der Schall besteht aus Luftdruckschwankungen, die vom menschlichen Ohr wahrgenommen werden. Abbildung 1 zeigt den Hörbereich des menschlichen Ohrs in einem logarithmischen Maßstab.

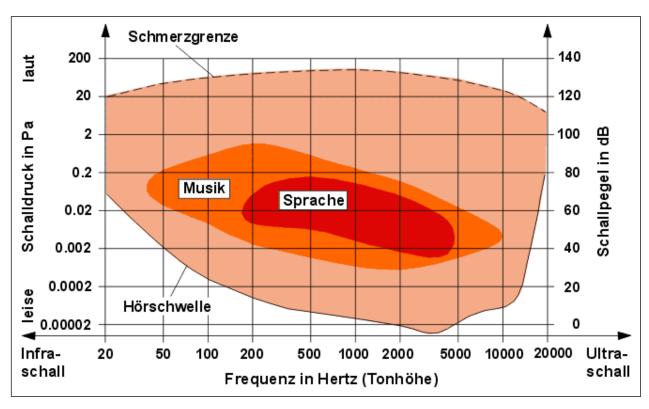


Abbildung 1: Hörbereich des Menschen [1]

Der hörbare Bereich liegt zwischen ca. 20 Hz (Hertz) und 20.000 Hz. Das Ohr nimmt Druckschwankungen ab 0,00002 Pascal (Pa) (= 0 dB) wahr, ab 20 Pa (120 dB) wird der Schall als schmerzhaft wahrgenommen. Der Schall unter 20 Hz wird als Infraschall, der Schall über 20.000 Hz als Ultraschall bezeichnet.

Begriffsbestimmung, Normen, gesetzliche Grundlagen

Abbildung 2 zeigt den Zusammenhang von Schallentwicklung, -ausbreitung und -immission sowie die entsprechenden Vorschriften und Richtlinien.

- **Emissionen** sind im Allgemeinen die von einer Anlage (Quelle) ausgehenden Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Erscheinungen.
- Transmission ist die Ausbreitung der von einer Quelle emittierten Umweltbelastungen, z.B. die Schallausbreitung. Die Umgebung wirkt dabei dämpfend auf die von der Quelle ausgestrahlten Belastungen.
- **Immissionen** sind die auf Natur, Tiere, Pflanzen und den Menschen einwirkenden Belastungen (Luftverunreinigung, Lärm etc.) sowie lebenswichtige Strahlung (Sonne, Licht, Wärme), die sich aus sämtlichen Quellen überlagert.

Abbildung 2: Normen und Grundlagen zum Schall [2]

Die gesetzliche Grundlage für die Problematik 'Emission – Transmission – Immission' bildet das

Bundesimmissionsschutzgesetz (BImSchG) [3]. Bauliche Anlagen müssen von den Gewerbeaufsichts- bzw. Umweltämtern auf Basis der 'Technischen Anleitung zum Schutz gegen Lärm' (TA-Lärm [4]) auf ihre Verträglichkeit gegenüber der Umwelt und dem Menschen geprüft werden. Als Richtlinien für die Beurteilung (damit auch die Bemessung) der Lärmproblematik gelten die in Abbildung 2 erwähnten Normen nach DIN und VDI. Die Fachbehörden des Bereiches Immissionsschutz beurteilen die Lärmimmissionen baulicher Anlagen.

In der Baunutzungsverordnung (BauNVO [5]) sind die Baugebietsarten festgelegt, denen nach der TA Lärm [4] eine immissionschutzrechtliche Schutzwürdigkeit zugeordnet ist. So gelten nachts folgende Immissionsrichtwerte außerhalb von Gebäuden:

35 dB (A)	für reine Wohn-, Erholungs- bzw. Kurgebiete
40 dB (A)	für allgemeine Wohn- und Kleinsiedlungsgebiete (vorwiegend Wohnungen)
45 dB (A)	für Kern-, Misch- und Dorfgebiete ohne Überwiegen einer Nutzungsart
50 dB (A)	für Gewerbegebiete (vorwiegend gewerbliche Anlagen).

Schallleistungs-, Schalldruck-, Mittelungs- und Beurteilungspegel

Die kennzeichnende Größe für die Geräuschemission einer Windenergieanlage wird durch den Schallleistungspegel L_W beschrieben. Der Schallleistungspegel L_{WA} ist der maximale Wert in Dezibel dB (A-bewertet), der von einer Geräusch- oder Schallquelle (Emissionsort, WEA) abgestrahlt wird. Eine Windenergieanlage verursacht im Bereich des hörbaren Frequenzbandes unterschiedlich laute Geräusche. Da das menschliche Gehör Schall mit unterschiedlicher Frequenz, bei gleichem Leistungspegel unterschiedlich stark wahrnimmt (siehe Abb. 2), wird in der Praxis der Schallleistungspegel über einen Filter gemessen, der der Hörcharakteristik des Menschen angepasst ist. So können verschiedenartige Geräusche miteinander verglichen und bewertet werden. Dieser über einen Filter (mit der Charakteristik "A" nach [6]) gemessene Schallleistungspegel wird "A-bewerteter Schallpegel" genannt und ist der Wert der Schallquelle, der für die Berechnung der Schallausbreitung nach der DIN ISO 9613-2 [7] verwendet wird.

Die genaue Verfahrensweise zur Durchführung einer Schallemissionsmessung zur Ermittlung des Schallleistungspegels von WEA kann der entsprechenden Norm bzw. technischen Richtlinie [8], [9] entnommen werden.

Der Schall breitet sich kugelförmig um die Geräuschquelle aus und nimmt hörbar mit seinem Abstand zu ihr logarithmisch ab. Dabei wirken Bebauung, Bewuchs und sonstige Hindernisse dämpfend. Die Luft absorbiert den Schall. Reflexionen (z. B am Boden) und weitere Geräuschquellen wirken lärmverstärkend. Die Schallausbreitung erfolgt hauptsächlich in

Windrichtung.

Der Schalldruckpegel L_S ist der momentane Wert in dB, der an einem beliebigen Immissionsort (z.B. Wohngebäude) in der Umgebung einer oder mehrerer Geräusch- oder Schallquellen gemessen (z.B. mit Mikrofon, Schallmessung) werden kann.

Der Mittelungspegel L_{Aeq} ist der zeitlich energetisch gemittelte Wert des Schalldruckpegels. Für die Schallprognose bei Windenergieanlagen wird vom ungünstigsten Fall ausgegangen, der sich aus der lautesten Nachtstunde bei Mitwindbedingungen, 10 °C Temperatur und 70 % Luftfeuchte ergibt. Der für die Prognose verwendete Mittelungspegel entspricht dem nach FGW-Richtlinie [9] aus 1-minütigen Messwerten ermittelten, maximalen Schallleistungspegel bei 95% der Nennleistung oder bei einer standardisierten Windgeschwindigkeit von 10 m/s in 10 m Höhe.

Der Beurteilungspegel L_{rA} resultiert aus dem Mittelungspegel und den Zuschlägen aus der Tonund Impulshaltigkeit aller Geräuschquellen unter Berücksichtigung der meteorologischen Dämpfung. Die an den Immissionsorten einzuhaltenden Immissionsrichtwerte beziehen sich auf den Beurteilungspegel.

Vorbelastung, Zusatz- und Gesamtbelastung

Existieren an einem Standort bereits Geräuschquellen (z.B. Windenergieanlagen, Biogasanlagen, gewerbliche Anlagen), so sind diese als Vorbelastung zu berücksichtigen und die neu geplante(n) Anlage(n) als Zusatzbelastung zu bewerten. Die Gesamtbelastung ergibt sich dann aus der energetischen Addition der Geräusche aller zu berücksichtigenden Anlagen.

Schallimmissionen von Windenergieanlagen

Die Schallquellen bei Windenergieanlagen sind im Wesentlichen die aerodynamischen Geräusche an den Blattspitzen, das Getriebe (sofern vorhanden) und der Generator. Je nach Betriebszustand und Leistung treten diese unterschiedlich auf, sind jedoch überwiegend durch das Blatt geprägt. Die Schallabstrahlung einer WEA ist nie konstant, sondern stark von der Leistung und somit von der Windgeschwindigkeit abhängig. Der immissionsrelevante Schallleistungspegel wurde früher bei $v_{10} = 8$ m/s angegeben. Ab dieser Windgeschwindigkeit übertönen im Allgemeinen die durch Wind bedingten Umgebungsgeräusche (Rauschen von Blättern, Abrissgeräusche an Häuserkanten, Ästen usw.) die Anlagengeräusche, da sie mit der Windgeschwindigkeit stärker als die Anlagengeräusche zunehmen (ca. 2,5 dB(A) pro m/s Windgeschwindigkeitszunahme). Die Umgebungsgeräusche sind dann in der Regel lauter als die WEA, d.h. die Geräuschimmission der WEA wird überdeckt.

In Einzelfällen wurden jedoch geringere Geräuschabstände zwischen den Fremdgeräuschen und den Anlagengeräuschen gemessen. Dies tritt besonders an windgeschützten Orten auf, oder dann, wenn die WEA bei höheren Windgeschwindigkeiten eine Ton- oder Impulshaltigkeit besitzt. Daher hat sich die Vorgehensweise durchgesetzt (federführend der Arbeitskreis "Geräusche von Windenergieanlagen"), dass bei einem Immissionsrichtwert von 45 dB(A) die Prognose mit dem Schallleistungspegel bei $v_{10}=10$ m/s oder, da viele Anlagen schon bei einer geringeren Windgeschwindigkeit ihre Nennleistung erreichen, mit dem Wert bei Erreichen von 95 % der Nennleistung, erstellt werden soll.

In kritischen Fällen können die meisten WEA nachts in einem schallreduzierten Betriebszustand gefahren werden, in dem die Drehzahl des Rotors und einhergehend damit die Rotorblattgeräusche reduziert werden. Dadurch verschlechtert sich der Wirkungsgrad des Rotors und viele WEA können durch das begrenzte Drehmoment (bzw. Strom des Wechselrichters) nicht mehr mit Nennleistung betrieben werden. Daher ist der schallreduzierte Betrieb meist mit einer reduzierten maximalen Leistung verbunden.

Immissionsprognose

Grundlage

Die Prognosen sind nach der Technischen Anleitung Lärm (TA-Lärm [4]) als detaillierte Prognose anhand der DIN ISO 9613-2 [7] zu erstellen, wobei evtl. bestehende Vorbelastungen durch gewerbliche Geräusche an den Immissionsorten berücksichtigt werden müssen. Die DIN ISO 9613-2 gilt für die Berechnung bei bodennahen Quellen (bis 30 m mittlere Höhe zwischen Quelle und Empfänger; s. Kapitel 9, Tabelle 5). Zur Anpassung des Prognoseverfahrens auf hochliegende Quellen hat der Normenausschuss Akustik, Lärmminderung und Schwingungstechnik (NALS) auf Basis neuerer Untersuchungsergebnisse und auf Basis theoretischer Berechnungen ein Interimsverfahren [10] veröffentlicht. Für WKA als hochliegende Schallquellen (> 30 m) sind diese neueren Erkenntnisse mittlerweile in allen Bundesländern im Genehmigungsverfahren zu berücksichtigen. Die Immissionsprognose ist daher nach dem Interimsverfahren – sowohl für Vorbelastungsanlagen als auch für neu beantragte Anlagen – frequenzselektiv durchzuführen. Hierbei sind zur Berechnung der Luftabsorption die Luftdämpfungskoeffizienten α nach Tabelle 2 der DIN ISO 9613-2 [2] für die relative Luftfeuchte 70 % und die Lufttemperatur von 10° C anzusetzen.

In der Regel wurden bei der schalltechnischen Vermessung von Windenergieanlagen der

A-bewertete mittlere Schallleistungspegel sowie nach der FGW-Richtlinie [9] auch oktavbandbezogene Werte ermittelt. Die Dämpfungswerte nach [7] werden frequenzselektiv bei den Oktavbandfrequenzen von 62,5 Hz bis 8000 Hz verwendet, um die resultierende Dämpfung für die Schallausbreitung zu berechnen. Der Dauerschalldruckpegel jeder einzelnen Quelle am Immissionsort berechnet sich nach [7] und [10] dann wie folgt:

$$L_{fT} (DW) = L_W + D_C - A \tag{1}$$

- Lw: Oktavband-Schallleistungspegel der Punktschallquelle, in Dezibel, bezogen auf eine Bezugsschallleistung von einem Picowatt (1 pW), A-bewertet.
- D_C: Richtwirkungskorrektur, in Dezibel, die beschreibt, um wieviel der von der Punktquelle erzeugte äquivalente Dauerschalldruckpegel in der festgelegten Richtung von dem Pegel einer gerichteten Punktschallquelle mit einem Schallleistungspegel L_W abweicht. D_C ist gleich dem Richtwirkungsmaß D_I der Punktschallquelle zuzüglich eines Richtwirkungsmaßes D_Ω, das eine Schallausbreitung im Raumwinkel von weniger als 4π Sterad berücksichtigt. Die Richtwirkungskorrektur ist bei Anwendung des bisher verwendeten Alternativen Verfahrens nach [4] anzuwenden, um der Bodenreflexion Rechnung zu tragen. Durch den pauschalen Ansatz der negativen Bodendämpfung nach dem Interimsverfahren entfällt diese und es wird D_C = 0 gesetzt.
- A: Dämpfung zwischen der Punktquelle (WEA-Gondel) und dem Immissionsort, die bei der Schallausbreitung vorherrscht. Sie bestimmt sich aus den folgenden Dämpfungsarten:

$$A = A_{div} + A_{atm} + A_{qr} + A_{bar} + A_{misc}$$
 (2)

A_{div}: Dämpfung aufgrund der geometrischen Ausbreitung:

$$A_{div} = 20 lg (d / 1 m) + 11 dB$$
 (3)

d: Abstand zwischen Quelle und Immissionsort.

Aatm: Dämpfung durch die Luftabsorption

$$A_{atm} = \alpha d / 1000 \tag{4}$$

Nach den Hinweisen der LAI [11] soll das Oktavspektrum als Eingangsdaten für die Berechnungen verwendet werden. Nach DIN ISO 9613-2 [7] kann die Luftdämpfung in jedem Oktavband mit dem jeweiligen Luftdämpfungskoeffizient berechnet werden (statt wie bei 500 Hz-Mittenpegeln mit einem statischen Wert von 1,9 dB(A)/km). Die Dämpfungskoeffizienten für jedes Oktavband werden aus

Tab. 2 DIN ISO 9513-2 [7] für meteorologische Bedingungen von 10°C und 70% Luftfeuchte übernommen, was günstige Schallausbreitungsbedingungen bzw. eine geringe Dämpfung bedingt und somit einen konservativen Ansatz darstellt. Die frequenzabhängige Dämpfung spiegelt die realen akustischen Transmissionsbedingungen in Luft besser wider, als der pauschale Ansatz mittels eines Mittenpegels und führt so zu realistischeren Ergebnissen.

Tabelle 1: Parameter Luftabsorption

Tem-	Rel.	Luf	tdämpfur	ngskoeffi	zient α, d	B/km (ge	m. DIN IS	O 9613-2	[7])			
peratur	peratur Feuchte	Bandmittenfrequenz, Hz										
°C	%	63	125	250	500	1000	2000	4000	8000			
10	70	0,1	0,4	1,0	1,9	3,7	9,7	32,8	117			

Agr: Bodendämpfung:

Die Bodendämpfung ergibt sich in der Hauptsache aus dem Reflexionsgrad von Schall an einer Bodenoberfläche zwischen Quelle und Empfänger [7]. Die DIN ISO 9613-2 erlaubt zwei verschiedene Verfahren zur Ermittlung der Bodendämpfung, nämlich das Standardverfahren und das Alternative Verfahren. Das Interimsverfahren [11] modifiziert die Berechnung der Bodendämpfung durch eine pauschale Annahme von Agr = -3 dB(A). Dies entspricht einer negativen Dämpfung, also einer Zunahme des Pegels auf Empfängerseite und kann als Bodenreflexionseffekt interpretiert werden.

$$A_{gr} = -3 dB \tag{5}$$

nach dem Interimsverfahren.

Abar: Dämpfung aufgrund von Abschirmung.

und

A_{misc}: Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung, Industrie).

In den Berechnungen wird bei Verwendung der Software windPRO konservativ ohne Abschirmung und weiterer Effekte gerechnet: $A_{bar} = 0$, $A_{misc} = 0$. In Einzelfällen (v. a. bei Verwendung von Schallausbreitungsberechnungssoftware

wie IMMI) können die Abschirmung oder weitere Effekte berücksichtigt werden. Dies wird dann explizit im Fließtext ausgewiesen. Die Berechnung erfolgt dann nach DIN ISO 9613-2 Kap. 7.4. bzw. Anhang A.

In der Praxis dämpfen u. U. Bebauung und Bewuchs den Schall (A_{bar} , $A_{misc} > 0$), so dass die tatsächlichen Immissionswerte unter jenen der Prognose liegen.

Mitwindsituation

Die Dämpfungsterme der Schallimmissionsprognose nach DIN ISO 9613-2 gehen bei der Schallausbreitungsberechnung grundsätzlich von einer Mitwindsituation nach ISO 1996-2:1987, 5.4.3.3 [12] aus und haben damit konservative Ergebnisse zur Folge. Eine weitere Besonderheit bei der Schallberechnung für Windenergieanlagen besteht darin, dass wenn mehrere Anlagen geplant sind, diese von einem Immissionsort aus gesehen in der Regel in verschiedenen Richtungen stehen. So ist gewährleistet, dass, selbst wenn der Wind aus einer anderen als der Hauptwindrichtung kommt, jeweils nur eine der neu geplanten Anlagen direkt in Mitwindrichtung liegen kann.

Liegen den Berechnungen mehrere Schallquellen (n) (u. a. Windpark) zugrunde, so überlagern sich die einzelnen Schalldruckpegel L_{ATi} entsprechend den Abständen zum betrachteten Immissionsort. In der Bewertung der Lärmimmission nach TA-Lärm ist der aus allen Schallquellen resultierende Schalldruckpegel L_{AT} unter Berücksichtigung der Zuschläge nach der folgenden Gleichung zu ermitteln:

$$L_{AT}(LT) = 10 \lg \sum_{i=1}^{n} 10^{0.1(L_{ATi} - C_{met} + K_{Ti} + K_{Ii})}$$
 (6)

L_{AT}: Beurteilungspegel am Immissionsort

LATI: Schallimmissionspegel am Immissionsort einer Emissionsquelle i

i: Index für alle Geräuschquellen von 1-n

 K_{Ti} : Zuschlag für Tonhaltigkeit einer Emissionsquelle i \rightarrow i.d.R = 0, s.u.

 K_{ii} : Zuschlag für Impulshaltigkeit einer Emissionsquelle i \rightarrow i.d.R = 0, s.u.

C_{met}: Meteorologische Korrektur.

Die meteorologische Korrektur wird nach [7] in Abhängigkeit von dem Verhältnis von Entfernung zwischen Quelle und Empfänger und deren Höhen berechnet und beträgt für Windenergieanlagen im Regelfall null. Dieser Wert wird durch das Interimsverfahren standardmäßig null (cmet = 0) gesetzt.

Zuschläge für Einzeltöne (Tonhaltigkeit) K_T

Als Quellen für tonhaltige Geräusche an einer WEA sind in erster Linie drehende mechanische Teile wie beispielsweise Getriebe, Generatoren, Azimutmotoren sowie Hydraulikanlagen zu nennen. Tonhaltigkeiten im Anlagengeräusch sollen konstruktiv vermieden bzw. auf ein Minimum reduziert werden. Basierend auf der bei einer Emissionsmessung gemessenen Tonhaltigkeit im Nahbereich K_{TN} gilt für Entfernungen über 300 m folgender Tonzuschlag K_T :

$$K_T = 0$$
 für $0 \le K_{TN} \le 2$

Die Zuschläge für Impuls- und Tonhaltigkeit der Anlagen werden in der Regel bei Schallemissionsmessungen durch autorisierte Institute bewertet und werden in den Berichten zur schalltechnischen Vermessung dokumentiert. Sie werden ebenfalls in den technischen Unterlagen der WEA-Hersteller angegeben.

Sofern für eine WEA ein $K_{TN} = 2$ dB im Nahbereich ausgewiesen wird, ist über Messungen am maßgeblichen Immissionsort zu bestimmen, inwiefern Tonhaltigkeiten dort auftreten und ggf. technische Minderungsmaßnahmen an der WEA vorzunehmen. WEA, die im Nahbereich höhere tonhaltige Geräuschemissionen hervorrufen, entsprechen nicht dem Stand der Technik [11].

Zuschläge für Impulse (Impulshaltigkeit) Kı

Impulshaltige Geräusche also Geräusche mit periodischen oder kurzfristige starken Geräuschpegeländerungen werden als besonders störend empfunden. Die Beurteilung, ob eine Impulshaltigkeit gegeben ist, kann nach DIN 45645 durchgeführt werden. Enthält das Anlagengeräusch (A-bewerteter Schallpegel) öfter, d.h. mehrmals pro Minute, deutlich hervortretende Impulsgeräusche oder ähnlich auffällige Pegeländerungen (laut Messung), dann ist nach TA Lärm die durch solche Geräusche hervorgerufene erhöhte Störwirkung durch einen Zuschlag zum Mittelungspegel zu berücksichtigen. Dieser Zuschlag K_I beträgt je nach Auffälligkeit des Tons 3 oder 6 dB(A). In der Praxis werden impulshaltige Geräusche konstruktiv vermieden; ihr Auftreten entspricht somit nicht dem Stand der Technik.

Im Nahbereich einer WEA ist das während des Rotorumlaufs jeweils nächstliegende Rotorblatt für einen Betrachter am Boden kurzfristig (und periodisch) lauter. Dieser Effekt tritt mit zunehmender Entfernung von der WEA und der Vergleichmäßigung der einzelnen Blattemissionen im Fernbereich ab 300-500 m jedoch nicht mehr auf. Weitere Quellen für impulshaltige Geräusche bei WEA gibt es in der Regel nicht, so dass die Impulshaltigkeit für eine Schallimmissionsprognose i.d.R. nicht relevant ist.

Tieffrequente Geräusche und Infraschall

Als tieffrequente Geräusche werden Geräusche bezeichnet, deren vorherrschende Energieanteile in einem Frequenzbereich unter 90 Hz liegen (vgl. Ziffer 7.3 TA Lärm). Tieffrequente Geräusche werden bei Windenergieanlagen schalltechnisch vermessen und werden ab 50 Hz in den Oktavband-Schallleistungspegeln berücksichtigt. Die vermessenen Schallleistungspegel im Frequenzbereich unter 100 Hz liegen regelmäßig deutlich unter den im Frequenzbereich von 100 – 4000 Hz gemessen Schallleistungspegeln. Infraschall bezeichnet Schall in einem Frequenzbereich unter 20 Hz.

Die derzeit bekannten Untersuchungen, Messungen und Studien [13] [14] [15] [16] zu Infraschall und tieffrequenten Geräuschen von Windenergieanlagen zeigen, dass sich bei den aus den Bestimmungen der TA-Lärm resultierenden Abständen von WEA zu Wohngebäuden an den Immissionsorten keine Gefährdung oder Belästigung ergibt, da die auftretenden Pegel im Infraschallbereich weit unter der Wahrnehmungs- und Hörschwelle und im Bereich von tieffrequenten Geräuschen (20-90 Hz) unter oder geringfügig über der Hörschwelle liegen.

Literaturverzeichnis - theoretische Grundlagen

- [1] LUBW, Amt für Umweltschutz Abt. Stadtklimatologie, Stuttgart, 2019.
- [2] WMBW, Städtebauliche Lärmfibel Online, Stuttgart: Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg / Amt für Umweltschutz Stuttgart, 2019.
- [3] BlmSchG, Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (BlmSchG) in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBl. I S. 1274), das durch Artikel 1 des Gesetzes vom 2. Juli.
- [4] TA_Lärm, Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm), (GMBI S. 503), 1998.
- [5] BauNVO, Baunutzungsverordnung, 26. Juni 1962, Letzte Änderung 13. Mai 2017.
- [6] Norm, DIN EN 61672-1:2014-07, Vols. Elektroakustik Schallpegelmesser Teil 1: Anforderungen (IEC 61672-1:2013); Deutsche Fassung EN 61672-1:2013, 2014-07.
- [7] Norm, DIN ISO 9613-2:1999-10, Akustik Dämpfung des Schalls bei der Ausbreitung im Freien Teil 2: Allgemeines Berechnungsverfahren.
- [8] Norm, DIN EN 61400-11:2013-09; VDE 0127-11:2013-09, Vols. Windenergieanlagen Teil 11: Schallmessverfahren (IEC 61400-11:2012); Deutsche Fassung EN 61400-11:2013, 2013.
- [9] TR1, Technische Richtlinienfür Windenergieanlagen FGW-Richtlinien Teil 1 TR 1 Bestimmung der Schallemissionswerte, vol. Revision 18.
- [10] NALS im DIN und VDI, *Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen,* Unterausschuss NA 001-02-03-19 UA "Schallausbreitung im Freien", 2015.
- [11] LAI, Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz, Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA), Überarbeiteter Entwurf vom 17.03.2016 mit Änderungen PhysE vom 23.06.2016,.
- [12] Norm, ISO 1996-2:2017-07, Akustik Beschreibung, Messung und Beurteilung von Umgebungslärm Teil 2: Bestimmung vom Schalldruckpegeln.
- [13] HMWVL, Hessisches Ministerium für Wirtschaft, Energie, Verkehr und Landesentwicklung: Faktenpapier Windenergie und Infraschall, Bürgerforum Energieland Hessen, Mai 2015.
- [14] LUBW, Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Tieffrequente Geräusche inkl. Infraschall von Windkraftanlagen und anderen Quellen - Bericht über Ergebnisse des Messprojekts 2013-2015, Karlsruhe, Februar 2016.
- [15] DNR, Deutscher Naturschutzring, Dachverband des deutschen Natur- und Umweltverbände, Umwelt- und Naturverträgliche Windenergienutzung in Deutschland (Onshore), www.dnr.de/downloads/infraschall_04-2011.pdf.
- [16] L. LfU_Bayern, Bayerisches Landesamt für Umwelt & Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, UmweltWissen, Windkraftanlagen – beeinträchtigt Infraschall die Gesundheit?', 4. Auflage - November 2014.